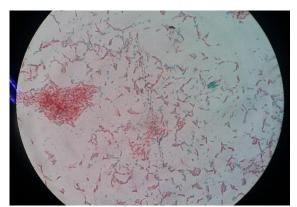


MICROBIOLOGY

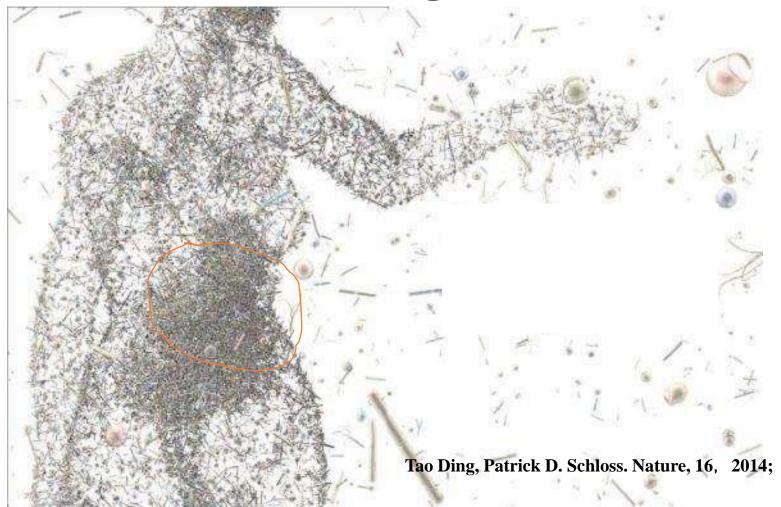
Lecture 2

Bacterial Cell Structure (Chapter 3)


张连茹 Email:ru898@xmu.edu.cn Tel:18965158521 Office: C-426

Animals

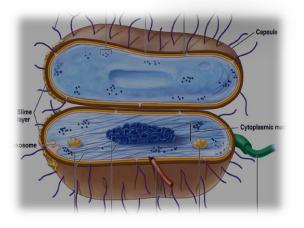
Plants



Microorganisms

People are indulged in the ocean of microorganisms

How to prove the bacterial such as HP exist in stomach?



What is a bacterium? Episode 1

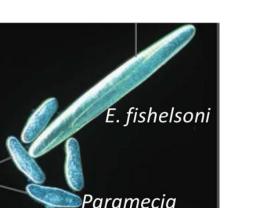
Features of bacteria

- The morphology of bacteria
- Size-
- Shape and arrangement-
- Survive strategies-S/V
- Only 1% microbes are culturable

- What are bacteria?
- <u>Structure</u> Simple-Prokaryote

R. Stanier and C. B. van Niel described <u>prokaryotes</u> in terms of what they lacked in comparison to eukaryotic cells. Prokaryote –<u>unicellular</u> organisms, <u>lack</u> nuclei and <u>membrane-bound</u> organelles.

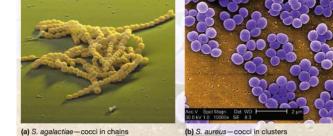
3.1 The "Prokaryote" Controversy


What is your opinion about of The "Prokaryote" Controversy? Please use three or more evidences to support your opinion.

Cell wall

membrane

- **3.2 A Typical Bacterial Cell**
- **3.2.1. Size of Bacterial-Small**
- Bacteria are measured in <u>micrometers(μm)</u>.
 - <u>Average</u> rod 1.1 1.5 x 2 6 μm (*E. coli*)
 - <u>Smallest</u> 0.1x0.3 μm (*Mycoplasma*)
 - Largest-80x600 μm


11

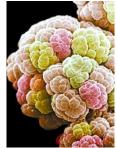
11

3.2.2 Shape and Arrangement

- The two most common shapes are cocci and rods
- <u>Cocci-balls</u>
- <u>Bacilli</u> rods

(c) B. megaterium-rods in chains

- C<u>occobacilli</u> very short rods
- <u>Vibrios</u> resemble rods, comma shaped
- <u>Spirilla</u> (s., spirillum) rigid helices
- Spirochetes flexible helices
- Mycelium-hyphae
- Pleomorphic organisms that are <u>variable</u> in shape.


c) Leptospira interrogans—a spirochete

3.2.2 Shape and Arrangement

1.They can exist <u>singly</u> or can be <u>associated</u> in characteristic-arrangements.

Why?

2.Determined by plane of division(1,2,3)3.Determined by separation or not

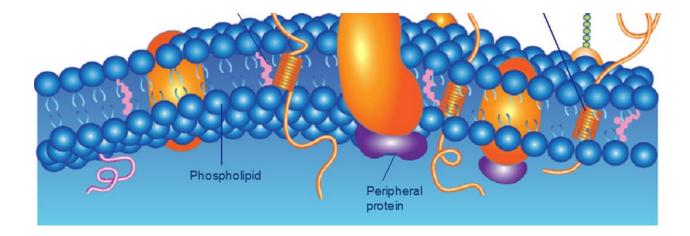
- Such as the genus *Sarcina*, cocci divide in <u>three planes</u>,
- Long chains of cocci result when cells <u>adhere</u> after repeated divisions in <u>one plane (Streptococcus,</u> *Enterococcus, and Lactococcus*)
- What causes a bacterial species to have a particular size and shape?

<u>3.2.3 Size – Shape Relationship(S/V)</u>

- Microbe has a <u>small volume</u> but a <u>large surface</u> (S/V: surface to volume ratio)
- Small size may be <u>protective mechanism</u> from predation
- A large surface is important for nutrient uptake efficiently. $r=1 \mu m$ Surface area = 12.6 μm^2 Surface = 3

How and where to <u>uptake nutrient</u> of <u>microbe</u>?

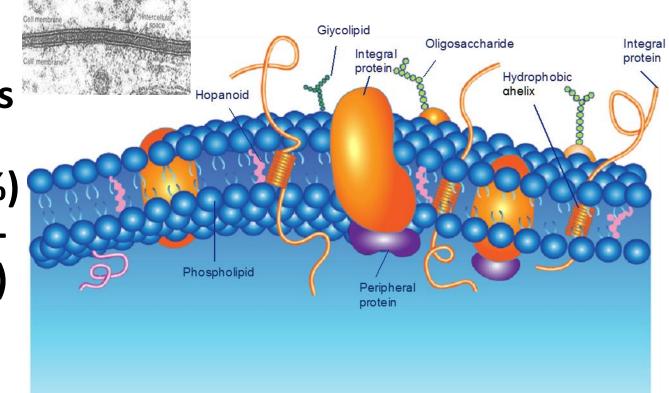
 $\label{eq:r} \begin{array}{l} r=2 \ \mu m \\ Surface \ area=50.3 \ \mu m^2 \\ Volume=33.5 \ \mu m^3 \end{array}$


Volume = $4.2 \,\mu m^3$

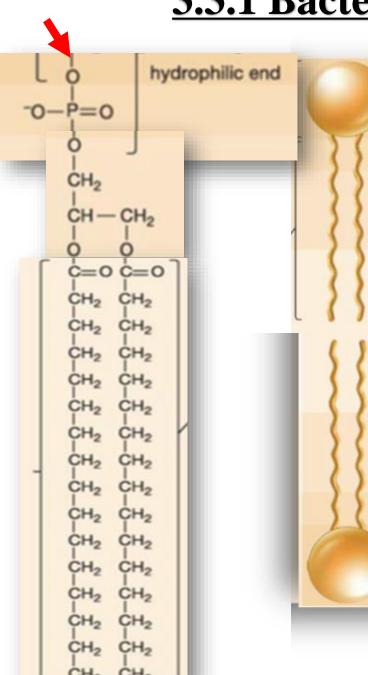
 $\frac{\text{Surface}}{\text{Volume}} = 1.5$

Episode 2

• Uptake of Nutrients with <u>Plasma Membrane</u>

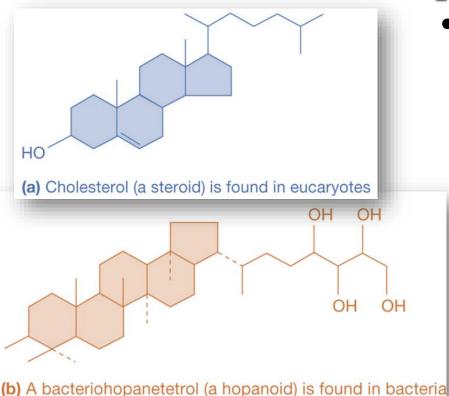

3.3 Bacterial Plasma Membranes

The most widely accepted model for membranestructure is the:fluid mosaic model of membrane structure


Singer and Nicholson

The model was established using a variety of experimental approaches, including TEM and AFM.

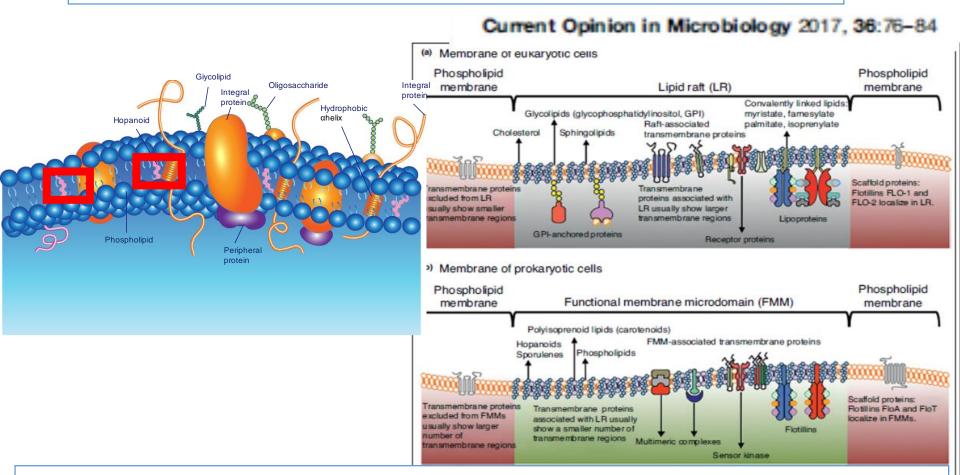
 Lipid bilayers
with floating(25%) and integralmosaic(75%) proteins


3.3.1 Bacterial Lipids

Component: phospholipid

- <u>The lipid composition</u> <u>varies</u> with environmental <u>temperature</u>.
- Bacteria growing at <u>lower</u> <u>temperatures</u> have more <u>unsaturated</u> fatty acids in their membrane phospholipids;
- Why? To remain <u>fluid</u>.

3.3.1 Bacterial Lipids


- Bacterial membranes <u>lack</u> <u>sterols</u> but do contain sterol-like molecules, <u>hopanoids</u>
 - Synthesis from the same precursors as steroids
 - <u>Stabilize</u> membrane
 - <u>Found in petroleum</u>(in sediment)

Summary

- <u>Lipid bilayers</u>: phospholipid(hopanoids)
- <u>Floating proteins</u>: soluble(E?)
- <u>Integral-mosaic proteins</u>: insoluble, amphipathic (ETC, transport protein, etc)

• 3.3.2 Model of Plasma Membranes(PM)

Is it perfect? What is the flaw of this model?

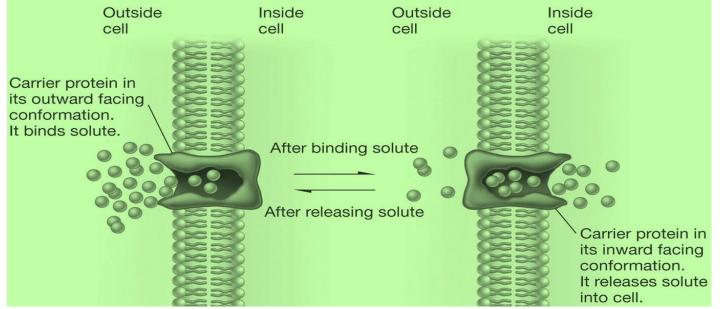
However, the presence of <u>microdomains</u> enriched for <u>certain lipids</u> and the observation that some <u>integral proteins</u> are present at <u>only</u> <u>certain sites</u> do not support this view. **3.3.3 Bacterial Plasma Membrane Function**

- <u>Encompasses</u> the cytoplasm
- <u>Selectively</u> permeable barrier<u>(e.g. uptake</u> <u>nutrient)</u>
- <u>Interacts</u> with <u>external environment</u>
 - <u>Receptors</u> for detection of and response to chemicals in surroundings
 - <u>Transport</u> systems
 - <u>Metabolic</u> processes
 - Mesosome(中介体)-like a mitochondria

3.3.3. Uptake of Nutrients

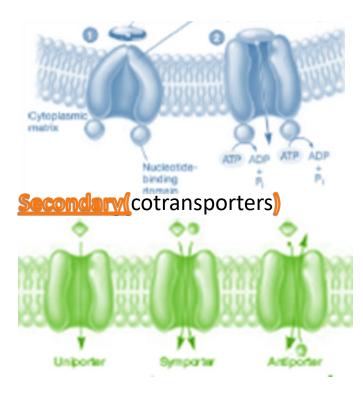
- What are nutrients?
- <u>Elements</u>(macro-; micro-;trace-)
- C,O,H,N,S,P,K,Ca,Mg,Fe;
- Mn,Zn,Co,Mo,Ni,Cu

- <u>Growth factor</u> (AA, Base, Vitamin is essential for <u>some</u> bacteria)
- How to uptake? (mechanisms)
 - <u>Passive diffusion- concentration gradient</u>
 - Facilitated diffusion all microorganisms
 - <u>Active transport</u> all microorganisms(energy)
 - <u>Group translocation(energy)</u> –
- Bacteria can uptake <u>soluble</u> nutrients



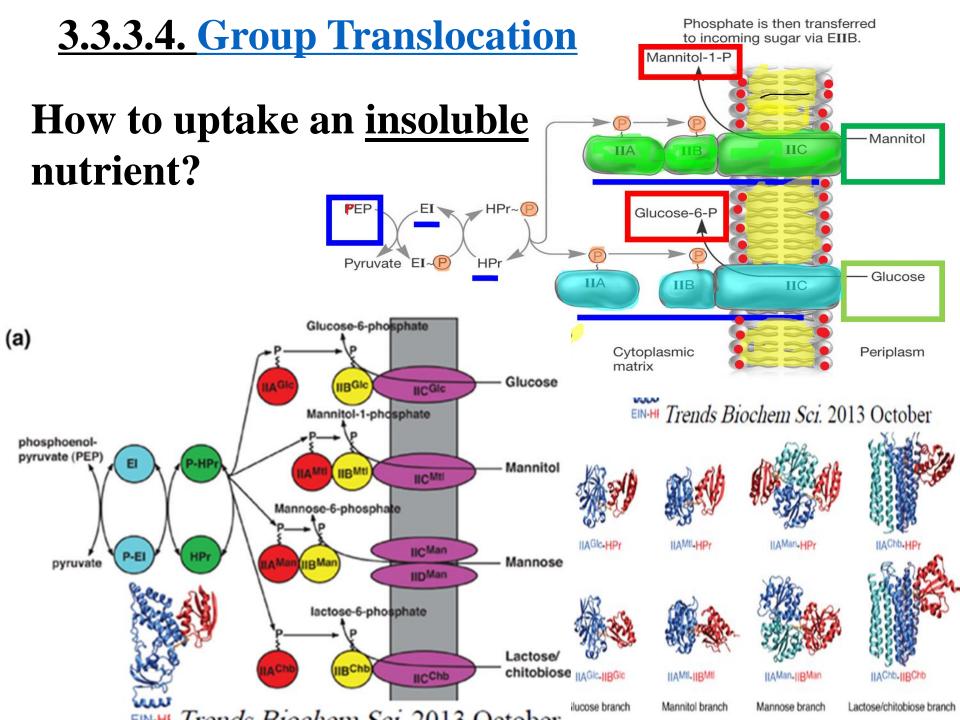
- Molecules move from region of higher <u>concentration</u> to one of lower concentration between the cell's interior and the exterior
- Movement of molecules is <u>not energy</u> dependent
- <u>H₂O</u>, <u>O₂</u>, and <u>CO₂</u> often move across membranes

3.3.3.2. Facilitated Diffusion



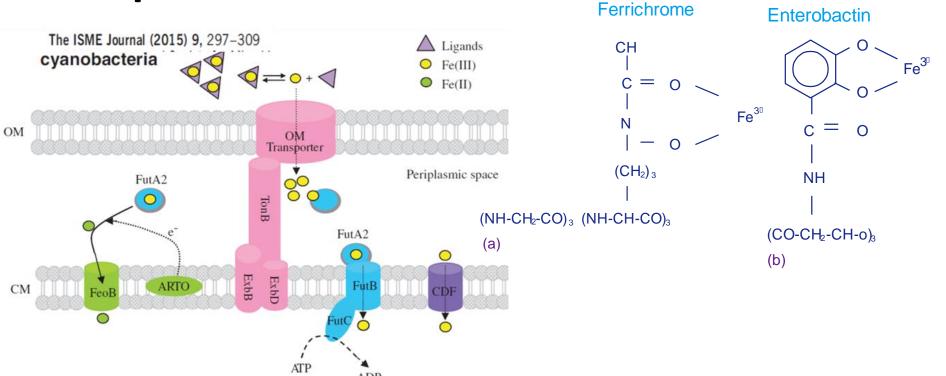
- Similar to passive diffusion
- <u>Differs</u> from passive diffusion
 - Uses membrane bound <u>carrier molecules</u> (permeases)(glycerol, sugars, and amino acids)

3.3.3.3 Active Transport



- <u>Energy-dependent</u> process
 - <u>ATP(primary) or</u> <u>proton(secondary)</u> motive force used
- Move molecules <u>against the</u> <u>gradient</u>
- Involves <u>carrier proteins</u> (permeases)
- AA(glu, leu) (K⁺)

3.3.3.4. Group Translocation


- <u>Energy dependent</u> transport that <u>chemically</u> <u>modifies molecule</u> as it is brought into cell
- Best known translocation system is phosphoenolpyruvate(PEP): sugar phosphotransferase system (PTS)
 - sugar PEP (metabolite, high energy)
 - P-sugar(in)

3.3.3.5. Iron Uptake

- Fe ³⁺ is very <u>insoluble</u> so uptake is <u>difficult</u>
- Microorganisms secrete <u>siderophores</u> to aid uptake
- Siderophore complexes with Fe³⁺ then transported into cell

- Size- 0.1-10 um
- Shape-simple coccus/rods
 - Shape was determined by <u>plane of division and</u> <u>separation or not</u>
- S/V is a survive strategy.
- The nutrients uptake
- PTS uptake system and iron uptake mechanism

Comments

- Passive diffusion- concentration gradient
- Facilitated diffusion
- <u>Active transport (energy</u>)
- Group translocation(energy)

Above four mechanisms, which one is the best for bacteria?

For human cells, the plasma membrane is enough, but microorganism cells need more.....Why?

Next we will talk about of the outside structure of membrane

Thanks!

Please try to discuss the mechanism of Gram stain.

Mechanism of Gram Staining

- What is the procedure of Gram stain?
- How to prove cell wall is the main factor for Gram stain?
- What is the main difference of G+ and Gin cell wall?
- Try to explain the mechanism of Gram stain.