厦门大学《高等数学》课程期中试卷

试卷类型:(理工类 A 卷) 考试日期 2011.11.27

高等数学 A 类教学组

1. 求下列函数的极限: (每小题 4 分, 共 16 分)

$$(1) \quad \lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - \cos x}{\sin^2 \frac{x}{2}}$$

(1)
$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - \cos x}{\sin^2 \frac{x}{2}}$$
 (2)
$$\lim_{x \to 0} \frac{e^{\tan x} - e^{\sin x}}{(\sqrt{1 + x} - 1)[\ln(1 + x) - x]}$$

(3)
$$\lim_{x \to \infty} \left(\sin \frac{2}{x} + \cos \frac{1}{x}\right)^x$$

(3)
$$\lim_{x \to \infty} \left(\sin \frac{2}{x} + \cos \frac{1}{x} \right)^x$$
 (4) $\lim_{x \to \infty} \left[(x^2 + x) \ln(1 + \frac{1}{x}) - x - \frac{1}{x^2} \cos x \right]$

解: (1)

$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - \cos x}{\sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - 1}{\left(\frac{x}{2}\right)^2} + \lim_{x \to 0} \frac{1 - \cos x}{\left(\frac{x}{2}\right)^2} = \lim_{x \to 0} \frac{\frac{1}{2} x \sin x}{\left(\frac{x}{2}\right)^2} + \lim_{x \to 0} \frac{\frac{x^2}{2}}{\left(\frac{x}{2}\right)^2} = 4$$

$$(2) \lim_{x \to 0} \frac{e^{\tan x} - e^{\sin x}}{(\sqrt{1+x} - 1)[\ln(1+x) - x]} = 2\lim_{x \to 0} \frac{e^{\sin x}(e^{\tan x - \sin x} - 1)}{x[\ln(1+x) - x]} = 2\lim_{x \to 0} \frac{\tan x(1 - \cos x)}{x[\ln(1+x) - x]}$$

$$= \lim_{x \to 0} \frac{x^2}{\ln(1+x) - x} = \lim_{x \to 0} \frac{2x}{(1+x)^{-1} - 1} = -2$$

(3)
$$\lim_{x \to \infty} (\sin \frac{2}{x} + \cos \frac{1}{x})^x = \lim_{t \to 0} \left[(1 + \sin 2t + \cos t - 1)^{\frac{1}{\sin 2t + \cos t - 1}} \right]^{\frac{\sin 2t + \cos t - 1}{t}} = e^2$$

(4)
$$\lim_{x \to \infty} \left[(x^2 + x) \ln(1 + \frac{1}{x}) - x - \frac{1}{x^2} \cos x \right] = \lim_{x \to \infty} \left[x^2 \ln(1 + \frac{1}{x}) - x \right] + \lim_{x \to \infty} x \ln(1 + \frac{1}{x}) - \lim_{x \to \infty} \frac{1}{x^2} \cos x$$
$$= \lim_{t \to 0} \frac{\ln(1 + t) - t}{t^2} + 1 - 0 = \lim_{t \to 0} \frac{(1 + t)^{-1} - 1}{2t} + 1 = \frac{1}{2}$$

2. 求下列数列的极限: (每小题 4 分, 共 8 分)

(1)
$$\lim_{n\to\infty} (1+2^n+3^n)^{\frac{1}{n}}$$

(2)
$$\lim_{n \to \infty} n^2 \left(\arctan \frac{1}{n} - \arctan \frac{1}{n+1} \right)$$

解: (1)
$$:: 3 \le (1+2^n+3^n)^{\frac{1}{n}} \le 3\sqrt[n]{3} \to 3$$
 $n \to \infty$, $\lim_{n \to \infty} (1+2^n+3^n)^{\frac{1}{n}} = 3$

(2) 法一、由拉格朗日定理,知习
$$\xi \in (\frac{1}{n+1}, \frac{1}{n})$$
,使得 $n^2(\arctan \frac{1}{n} - \arctan \frac{1}{n+1}) = \frac{1}{1+\xi^2} \cdot \frac{n}{n+1}$,

$$\therefore \lim_{n \to \infty} n^2 (\arctan \frac{1}{n} - \arctan \frac{1}{n+1}) = 1$$

法二、
$$\lim_{n\to\infty} n^2 \left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right) = \lim_{x\to 0^+} \frac{\arctan x - \arctan\frac{x}{1+x}}{x^2}$$

$$= \lim_{x\to 0^+} \frac{(1+x^2)^{-1} - (2x^2 + 2x + 1)^{-1}}{2x} = 1$$

- 3. (10 分) 设数列 $\{x_n\}$ 满足 $x_1 = \frac{\pi}{2}$, $x_{n+1} = \sin x_n$, n = 1, 2, 3, ...,
 - (1) 试证明此数列极限存在,并求出 $\lim_{n\to\infty} x_n$;
 - (2) 试求 $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$ 。
- (1) 证明: 由归纳假设知, $0 < x_n \le 1, n = 1, 2, 3, ...$,又 $x_{n+1} = \sin x_n \le x_n$,由单调有界准则可知此数列 极限存在; 令 $a = \lim_{n \to \infty} x_n$,则由 $x_{n+1} = \sin x_n$,得 $a = \sin a$,故 $\lim_{n \to \infty} x_n = a = 0$;

(2)
$$\text{MF: } \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right)^{\frac{1}{x_n^2}} = \lim_{n \to \infty} \left(\frac{\sin x_n}{x_n} \right)^{\frac{1}{x_n^2}} = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}} = e^{\lim_{x \to 0} \frac{\sin x - x}{x^3}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{3x^2}} = e^{-\frac{1}{6}} .$$

- 4. (10 分) 求函数 $f(x) = (x-2) \div [1 e^{\frac{(x-2)(x-3)}{x-1}}] + \cos \frac{1}{x}$ 的间断点,并判断其类型。
- 解: 其间断点为x = 0, x = 1, x = 2, x = 3。
- $\lim_{x\to 0^+} f(x)$ 和 $\lim_{x\to 0^-} f(x)$ 都不存在且不为 ∞ , $\therefore x = 0$ 是振荡间断点;
- $\lim_{x\to 1^+} f(x) = \cos 1, \lim_{x\to 1^-} f(x) = -1 + \cos 1, \quad \therefore x = 1$ 是跳跃间断点;
- $\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{-(x-1)}{x-3} + \cos\frac{1}{2} = 1 + \cos\frac{1}{2}$, $\therefore x = 2$ 是可去间断点;
- $\lim_{x\to 3} f(x) = \infty$, x = 3 是无穷间断点。
- 5. (6 分) 求函数 $y = \ln|\sec x + \tan x| + x^x + \arctan\sqrt{x^2 1}$ 的导数 $\frac{dy}{dx}$ 和微分 $dy|_{x=2}$ 。

$$\Re \colon \frac{dy}{dx} = \sec x + x^{x} (\ln x + 1) + \frac{1}{x\sqrt{x^{2} - 1}} \; ; \quad dy \big|_{x=2} = (\sec 2 + 4 \ln 2 + 4 + \frac{\sqrt{3}}{6}) dx$$

6. (10 分) 已知 $f(x) = x^2 \cos 2x + \ln(1-x)$, 试求 $f^{(20)}(x)$ 。

解:
$$f^{(20)}(x) = (x^2 \cos 2x)^{(20)} + (\ln(1-x))^{(20)}$$

$$= C_{20}^0 (\cos 2x)^{(20)} x^2 + C_{20}^1 (\cos 2x)^{(19)} \cdot 2x + C_{20}^2 (\cos 2x)^{(18)} \cdot 2 - 19! \cdot (1-x)^{-20}$$

$$= 2^{20} (x^2 \cos 2x + 20x \sin 2x - 95 \cos 2x) - 19! \cdot (1-x)^{20}$$

7. (10 分) 已知
$$f(x) = \begin{cases} \frac{(a+b)\sin x + 2\ln(1-x)}{x} & x > 0 \\ e^{ax} - 1 & x \le 0 \end{cases}$$
 在 $x = 0$ 处可导,试求出 a 和 b 。

解: 由 f(x) 在 x = 0 处可导,知

8. (10 分) 设函数 y = f(x) 的极坐标式为, $\rho = a\theta$, 求 $\frac{dy}{dx}, \frac{dy}{dx}\Big|_{\theta=\pi}$ 及 $\frac{d^2y}{dx^2}\Big|_{\theta=0}$ 。

解:
$$\frac{dy}{dx} = \frac{\sin \theta + \theta \cos \theta}{\cos \theta - \theta \sin \theta}$$

$$\frac{d^2y}{dx^2} = \frac{(2\cos\theta - \theta\sin\theta)(\cos\theta - \theta\sin\theta) - (-2\sin\theta - \theta\cos\theta)(\sin\theta + \theta\cos\theta)}{a(\cos\theta - \theta\sin\theta)^3}$$

$$\frac{dy}{dx}\bigg|_{\theta=\pi}=\pi\;,\;\frac{d^2y}{dx^2}\bigg|_{\theta=0}=\frac{2}{a}\;.$$

9. (10 分) 设函数 f(x) 和 g(x) 都是二阶可导,并且 g(x) 为 f(x) 的反函数,已知 f(0) = 1,

$$f'(0) = 2$$
, $f''(0) = 8$, $\Re g'(1) \Re g''(1)$.

解一: 由
$$f(g(x)) = x$$
, 两边对 x 求导, 可得 $f'(g(x)) \cdot g'(x) = 1$ (1)

把
$$x=1$$
 代入(1)式,得 $g'(1)=\frac{1}{2}$;

再次对 (1) 式两边
$$x$$
 求导,得 $f''(g(x)) \cdot (g'(x))^2 + f'(g(x))g''(x) = 0$ (2)

把 x=1 代入 (2) 式, 得 g''(1) = -1。

解二: g(x) 为 f(x) 的反函数,则 $g'(y) = \frac{dx}{dy} = \frac{1}{f'(x)}$, 从而 $g'(1) = \frac{1}{f'(0)} = \frac{1}{2}$.

$$g''(y) = \frac{d^2x}{dy^2} = -\frac{y''}{(y')^3} = -\frac{f''(x)}{(f'(x))^3}, \text{ Min } g''(1) = -\frac{f''(0)}{(f'(0))^3} = -1.$$

10. (10分)以下两题任选其一(仅做一题)

(1) 设
$$f(x)$$
 在[0,2] 上连续,在(0,2) 内可导, $f(0)=0$, $f(1)+f(2)=0$,证明: 至少

存在 $\xi \in (0,2)$, 使得 $f'(\xi) = f(\xi)$ 。

(2) 设
$$f(x)$$
 在 $[1,2]$ 上连续,在 $(1,2)$ 内可导, $f(1) = \frac{1}{2}$, $f(2) = 2$,证明: 至少存在 $\xi \in (1,2)$,使得 $f'(\xi) = \frac{2f(\xi)}{\xi}$ 。

解: (1) : f(1) + f(2) = 0, 由介值定理, 知 $\exists \xi_1 \in [1,2]$, 使得 $f(\xi_1) = 0$ 。

令 $\varphi(x) = e^{-x} f(x)$, $x \in [0,2]$,则 $\varphi(x)$ 在 [0,2] 上连续,在 (0,2) 内可导,且 $\varphi(0) = \varphi(\xi_1) = 0$,

由罗尔定理,存在 $\xi \in (0,2)$,使得 $\varphi'(\xi) = 0$,即 $f'(\xi) = f(\xi)$ 。

(2) 令
$$\varphi(x) = \frac{f(x)}{x^2}$$
, $x \in [1,2]$, 则 $\varphi(x)$ 在 $[1,2]$ 上连续,在 $(1,2)$ 内可导,且 $\varphi(1) = \varphi(2) = \frac{1}{2}$,

由罗尔定理,存在
$$\xi \in (0,2)$$
,使得 $\varphi'(\xi) = 0$,即 $f'(\xi) = \frac{2f(\xi)}{\xi}$ 。

附加题 (10分)

依次求解下列问题

- (1) 证明方程 $e^x + x^{2n+1} = 0$ 有唯一的实根 x_n ($n = 0,1,2,\cdots$);
- (2) 证明 $\lim_{n\to\infty} x_n$ 存在并求其值 A;
- (3) 证明当 \mathbf{n} → ∞ 时, $x_n A$ 与 $\frac{1}{\mathbf{n}}$ 是同阶无穷小。

证: (1) 令
$$f_n(x) = e^x + x^{2n+1}$$
,则 $f_n(0) = 1 > 0$, $f_n(-1) = \frac{1}{e} - 1 < 0$,

由连续函数的零点定理知,对任意给定的自然数 n ,均存在 $x_{\rm n} \in (-1,0)$,使得 $f_{\rm n}(x_{\rm n})=0$,

又因为
$$\frac{df_n(x)}{dx} = e^x + (2n+1)x^{2n} > 0$$
, $x \in R$, 所以函数 $f_n(x)$ 关于 x 严格单调增加,

故函数 $f_n(x)=e^x+x^{2n+1}$ 有唯一的实根 x_n ,即对任意给定的自然数 n,方程 $e^x+x^{2n+1}=0$ 有唯一的实根 x_n 。

(2) 由于
$$e^{x_n} + x_n^{2n+1} = 0$$
,即 $x_n = -e^{\frac{x_n}{2n+1}}$,因为 $|x_n| \le 1$,且 $\lim_{n \to \infty} \frac{x_n}{2n+1} = 0$,

所以 $\lim_{n\to\infty} e^{\frac{x_n}{2n+1}} = e^0 = 1$,故 $A = \lim_{n\to\infty} x_n = -1$ 。

(3) 因为
$$\lim_{n\to\infty} \frac{x_n - A}{\frac{1}{n}} = \lim_{n\to\infty} \frac{-e^{\frac{x_n}{2n+1}} + 1}{\frac{1}{n}} = \lim_{n\to\infty} \frac{-\frac{x_n}{2n+1}}{\frac{1}{n}} = \frac{1}{2}$$
 , 故 $x_n - A = \frac{1}{n}$ 是同阶无穷小。

上式用到了 $e^{\frac{x_n}{2n+1}} - 1 \sim \frac{x_n}{2n+1}$ $(n \to \infty)$ 的等价无穷小代换。