CHAPTER 15
Principles of Metabolic Regulation
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15.1 Regulation of metabolic pathways

Cell and organisms maintain

a dynamic steady state
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In human, about 4,000 genes (12% of all genes) encode regulatory
proteins, including a variety of receptors, regulators of gene expression,
and more than 500 different protein kinases.
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Figure 15-2

Both the amount and the catalytic activity of an enzyme can be regulated



LIS R Average Half-Life of Proteins

in Mammalian Tissues

Tissue Average half-life (days)
Liver 0.9
Kidney 1.7
Heart 4.1
Brain 4.6

Muscle 10.7

Table 15-1
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Fiaure 15-3

The metabolome of E.coli growing on glucose: the amounts of 103 metabolites
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Comparison of k., and substrate concentration for some metabolic enzymes



17:: 14 -8 Relationship between Hill Coefficient and

the Effect of Substrate Concentration on
Reaction Rate for Allosteric Enzymes

Required changein [S]

Hill coefficient to increase V from
(n) 10%t090% V__
0.5 X6,600
1.0 X81
2.0 X9
3.0 X4.3
4.0 X3

Table 15-2

Cooperative effect of allosteric ligand on enzymatic activity
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Fiqure 15-5

Protein phosphorylation and dephosphorylation



Reactions far from equilibrium in
cells are common points of

regulation
V = 10.01 V =200 V =500
—> A > B 3 > C 3 =D
V = 0.01 V=190 V = 490
net rate: 10 10 10

Figure 15-6

Near—equilibrium steps are coupled with
nonequilibrium step in a metabolic pathway



1.V IR Rl Equilibrium Constants, Mass-Action Coefficients, and Free-Energy Changes

for Enzymes of Carbohydrate Metabolism

Reaction
. . near AG
Mass-action ratio, Q equilibrium AG™ (kJ/mol)

Enzyme K;q Liver Heart invivo?* (kJ/mol) inheart
Hexokinase L 1X10° 2X102 8 X 1072 No —17 —27 |
PFK-1 1.0 X 103 9 X 102 3 X102 No —14 —23 |
Aldolase 1.0 X 1074 1.2X 10°¢ 9X10°¢ Yes +24 —6.0
Triose phosphate isomerase 4X10? —t 24X107 Yes +7.5 +3.8
Glyceraldehyde 3-phosphate

dehydrogenase +

phosphoglycerate kinase 2X10° 6 X 107 9.0 Yes -13 +3.5
Phosphoglycerate mutase 1X10 1X10™ 1.2 X107 Yes +4.4 +0.6
Enolase 3 2.9 1.4 Yes —-3.2 —0.5
Pyruvate kinase [ 2X10* 7 X107 40 No —31 —17 |
Phosphoglucose isomerase 4X1077 3.1 X107 24X 10 Yes +2.2 -1.4
Pyruvate carboxylase

+ PEP carboxykinase [ 7 1X10°3 —t No —5.0 —-23 |
Glucose 6-phosphatase 8.5 X 10? 1.2 X 10? —t Yes —\1Z —5.0

Source: K'_and Qfrom Newsholme, E.A. & Start, C. (1973) Regulation in Metabolism, Wiley Press, New York, pp. 97, 263. AG and AG'° were

calculateciufrom these data.

*For simplicity, any reaction for which the absolute value of the calculated AG is less than 6 is considered near equilibrium.

Data not available.

Table 15-3



Adenine nucleotides play special
roles in metabolic regulation

Many ATP-using enzymes have k., values between
0.1 and 1 mM, and the ATP concentration in a
typical cell is about 5 to 10mM. If the [ATP] were to
drop significantly, the rates of hundreds of reactions
that involve ATP would decrease.

Organisms have evolved under strong pressure to
develop regulatory mechanisms responsive to
[ATP]/[ADP] ratio
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Fiaure 15-7

Effect of ATP concentration on the initial reaction velocity of a
typical ATP-dependent enzyme



17.Y 18 R B Relative Changes in [ATP] and [AMP] When ATP Is Consumed

Concentration beforeConcentration after
Adenine ATP depletion ATP depletion

nucleotide (mm) (mm) Relative change
ATP 5.0 4.5 10%
ADP 1.0 1.0 0
AMP 0.1 0.6 600%

Table 15-4

[ATP] drops 10%, [AMP] increases for 5 folds

The levels of ATP and AMP reflect a cell’s energy status.
AMP-activated protein kinase (AMPK) can sense the

decrease of [ATP]/[AMP] ratio and thus trigger a variety
of cellular responses to raise this ratio.
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Fiaure 15-8

Role of AMPK in carbohydrate and fat metabolism



15.2 Analysis of Metabolic Control

(self-study)



Rate-limiting step: a step
determining the rate of
metabolite flow, or flux,
through a whole pathway.

Rate-limiting enzyme

Single rate—-limiting step
4

Eduard Buchner, Multiple rate-limiting steps
1860-1917

Unnumbered 15 p596
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company




The Contribution of Each Enzyme to Flux through
a Pathway is Experimentally Measurable

In vitro assay
Intracellular assay

In vivo assay
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Figure 15-9

Dependence of glycolytic flux in a rat liver
homogenate on added enzyme



" Flux control coefficient, C

Metabolic < Elasticity coefficient, ¢
control analysis

_ Response coefficient, /&



Flux control coefficient expresses the relative
contribution of each enzyme to setting the rate at

which metabolites flow through the pathway (flux, J).

1) In a linear pathway, C can have any value from 0.0 to
1.0; In a branched pathway, an enzyme in one branch

can have a negative C.

2) C is not a constant. Value depends on the
concentrations of substrate and effectors

3) For any complete pathway, the sum of flux control
coefficients must equal 1.0
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Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W, H. Freeman and Company
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Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
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© 2008 W.H.Freeman and Company

Absorbance

1.0

0.8

0.6

0.4

0.2

or +H"

Fll B side

NADH
(reduced)

Oxidized
(NAD)

220 240 260 280 300 320 340 360 380
Wavelength (nm)

(b)



8] (b) Ay g
oln Eose xase

Flux, Jydh

e

Concentration of enzyme, E, ... InE, ..

Box 15-1 figure 2

Cis not a constant, it depends on the starting £,
the change in enzyme level takes place. A value near 1.0 means
that the |[E] wholly determines the flux through the path; a value

0.0 means that the [E] does not limit the flux

from which



Elasticity coefficient, € expresses quantitatively
the responsiveness of a single enzyme to changes in
the concentration of a metabolite or regulator.

1) Is an intrinsic property of an enzyme.

2) Reflects the sensitivity of an enzyme to substrate
and effector concentrations.

3) An enzyme with typical Michaelis—Menten kinestics
has an € value ranging from near 0.0 to about 1.0 in

response to substrate concentrations.

4) For allosteric enzymes that show positive
cooperativity, ¢ exceed 1.0, but it cannot exceed the
hill coefficient, which is typically between 1.0 and 4.0
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An enzyme with typical Michaelis—Menten kinestics
has an Elasticity coefficient value from 0.0 to 1.0
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Response coefficient, R expresses the effect of
an outside factor (such as a hormone or growth
factor) on the flux through a pathway

Rjg}fdh = (Jyan , grase

xXdase



response coefficient, R.

P, concentration of parameter/controlling factor



Metabolic control analysis has been applied to
carbohydrate metabolism, with surprising results

1) PFK-1 shows regulatory mechanism (acts to maintain
metabolite concentration) in glycolysis.
Five fold increase of [PKF-1] led to a change in flux

through glycolysis of less than 10% in yeast.

Hexokinase shows control mechanism (acts to alter the flux
through a pathway) in glycolysis.

2) In glycogen synthesis pathway Glut4 and hexokinase show
control mechanism, glycogen synthase shows regulatory
mechanism, contradictory with conventional wisdom that the
later 1s the locus of flux control.
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Figure 15-12

Control of glycogen synthesis from blood glucose in muscle



Metabolic control analysis suggests a
general method for increasing flux through
a pathway

Flux toward a specific product is most effectively increased
by raising the concentration of all enzymes in the pathway

The urea output of rat increases fourfold in response to high
protein diet, and the amount of all enzymes in urea cycle
increase two to three fold accordingly.



15.3 Coordinated regulation of
glycolysis and gluconeogenesis
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ATP + fructose 6-phosphate L}
ADP + fructose 1,6-bisphosphate

Fructose 1,6-bisphosphate + Ho0 ——

fructose 6-phosphate + P;

The sum of these two reactions is

ATP + H,O —> ADP + P; + heat



HK isozymes of muscle and liver are affected
differently by their product, G-6-p

Liver Myocyte
HKs HK4 (glucokinase) HK2, HK1
K., 10mM K, 0.1mM
not inhibited by G-6-P reversibly inhibited by G-6-p
transcriptionally activated by insulin +
GLUTs GLUT?2 GLUT4
K, 17mM K, 5mM
insulin irresponsive regulated by insulin

The information in this table indicates that muscle consumes
Glu, using 1t for energy production, whereas liver maintains
blood glucose homeostasis by consuming or producing
glucose, depending on the prevailing blood [Glu].
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Figure 15-14

Comparison of kinetic properties of HK4 and HK1
Note that HK 1,2 and 5 show similar kinetic properties
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Figure 15-15

Regulation of HK4 by sequestration in the nucleus.

High level of Glu competes with F-6-P for binding with regulatory protein;
F-6-P increases the affinity between regulatory protein and HK4 by acting
as an allosteric regulator for this protein.



LAV IASR R EER Glucose Transporters in Humans

Transporter Tissue(s) where expressed K, (mm)* Role!
GLUT1 Ubiquitous 3 Basal glucose uptake
GLUT2 Liver, pancreatic islets, intestine 17 In liver and kidney, removal of excess glucose from
blood; in pancreas, regulation of insulin release
GLUT3 Brain (neuronal), testis (sperm) 1.4 Basal glucose uptake
GLUT4 Muscle, fat, heart 5 Activity increased by insulin
GLUTS Intestine (primarily), testis, kidney 6* Primarily fructose transport
GLUT6 Spleen, leukocytes, brain >5 Possibly no transporter function
GLUT? Small intestine, colon 0.3 —
GLUTS Testis ~2 —
GLUT9 Liver, kidney 0.6 -
GLUT10  Heart, lung, brain, liver, muscle, 0.38 —_
pancreas, kidney
GLUT11 Heart, skeletal muscle, kidney 0.16 -

GLUT12 Skeletal muscle, heart, prostate, — -
small intestine

*K_ for glucose, except as noted, from Augustin, R. (2010) The protein family of glucose transport facilitators: it's not only about glucose after all.
IUBMB Life 62,315-333.

*Dash indicates role uncertain.
*K_ for fructose.
°K _ for 2-deoxyglucose.

Table11-3
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Figure 11-30a

Membrane topology of the glucose transporter GLUT 1
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Crystal structure of the human glucose transporter GLUT1
Nature. 2014 Jun 5;510(7503):121-5 Epub 2014 May 18.
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Crystal structure of the human glucose transporter GLUT1
Nature. 2014 Jun 5;510(7503):121-5 Epub 2014 May 18.



Outward-open Outward-occluded

Structure and
mechanism of the
mammalian fructose
transporter GLUTH

Nature. 2015 Oct
15,526(7573):397-401
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9 When insulin interacts with its receptor,
vesicles move to surface and fuse with the
plasma membrane, increasing the number of
glucose transporters in the plasma membrane.
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Box 11-1 figure 1

Transport of glucose into a myocyte by GLUT4 is regulated by insulin
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PFK-1 and F-1,6-BPase are reciprocally regulated
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Fiaure 15-16a

Surface contour image of E.coli PFK-1
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ATP 1s an allosteric inhibitor for PFK-1
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Figure 15-16¢
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Summary of the regulators affecting PFK-1 activity
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Figure 15-17

Reciprocal Regulation of FBPase—-1 and PFK-1
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Figure 15-18c¢
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

F2,6BP is a potent allosteric regulator of PFK—-1 and FBPase-1
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F2,6BP activates PFK-1
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Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

FBPase-1 activity is inhibited by F26BP



ATP Fructose 6-phosphate p
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ADP
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Figure 15-19a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

PFK-2 and FBPase-2 are two separate enzymatic activities of
a single, bifunctional protein
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Figure 15-19b

The activities of PFK-2 and FBPase—-2 are
reciprocally regulated by insulin and glucagon



Xylulose 5—phosphate is a key regulator of
carbohydrate and fat metabolism

1) Promotes glycolysis by activating phosphoprotein
phosphatase 2A (PP2A) which in turn increases PFK-2
activity by dephosphorylating it.

2) Increases the synthesis of all the enzymes required for
fatty acid synthesis



Regulatory
subunit

Catalytic Inhibitor

subunit

Figure 15-20a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

The structure of PP2A
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Figure 15-20b

PP2A recognizes several target proteins, its
specificity provide by the regulatory subunit



Liver only
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Covalent and allosteric regulations of 1sozymes of pyruvate kinase
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The gluconeogenic
conversion of
pyruvate to PEP is
under multiple
types of regulation



Transcriptional regulation of glycolysis and
gluconeogenesis changes the number of enzyme
molecules

More than 150 genes are transcriptionally regulated by
Insulin, the majority of them are transcriptionally activated
and the remaining of them are suppressed

. Targets
Transcription T
o activator —> MRNA
Insulin —Protein kinases —»... -
Transcription
ERK P —s MRNA i

AKHPKE suppressor



11.1:18 3 -l Some of the Genes Regulated by Insulin

Change in gene expression Pathway
Increased expression

Hexokinase Il Glycolysis
Hexokinase IV Glycolysis
Phosphofructokinase-1 (PFK-1) Glycolysis
Pyruvate kinase Glycolysis

PFK-2/FBPase-2

Glucose 6-phosphate dehydrogenase
6-Phosphogluconate dehydrogenase
Pyruvate dehydrogenase

Acetyl-CoA carboxylase

Malic enzyme

ATP-citrate lyase

Fatty acid synthase complex
Stearoyl-CoA dehydrogenase
Acyl-CoA-glycerol transferases
Decreased expression

PEP carboxykinase

Glucose 6-phosphatase (catalytic subunit)

Regulation of glycolysis/gluconeogenesis
Pentose phosphate pathway (NADPH)
Pentose phosphate pathway (NADPH)
Fatty acid synthesis

Fatty acid synthesis

Fatty acid synthesis (NADPH)

Fatty acid synthesis (provides acetyl-CoA)
Fatty acid synthesis

Fatty acid desaturation

Triacylglycerol synthesis

Gluconeogenesis
Glucose release to blood

Table 15-5
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SREBP-1c, a member of the family of
sterol regulatory element binding protein
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CREDB, cyclic AMP response element binding protein
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T;R thyroid hormone receptor CRE cAMP regulatory element
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NF1 nuclear factor 1
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CREB cAMP response element binding protein
NFxB nuclear factor kB
TBP TATA-box binding protein
TFIIH transcription factor IIH
Figure 15-25
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The PEP carboxykinase promoter region, showing the
complexity of regulatory input to this gene
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