CHAPTER 15 Principles of Metabolic Regulation

p587

注意: 15.2 Analysis of Metabolic Control为自学内容

15.1 Regulation of metabolic pathways

Cell and organisms maintain a dynamic steady state

In human, about **4,000 genes** (12% of all genes) encode regulatory proteins, including a variety of receptors, regulators of gene expression, and more than **500** different **protein kinases**.

Figure 15-2

Both the <u>amount</u> and the catalytic <u>activity</u> of an enzyme can be regulated

TABLE 15-1

Average Half-Life of Proteins in Mammalian Tissues

Tissue	Average half-life (days)
Liver	0.9
Kidney	1.7
Heart	4.1
Brain	4.6
Muscle	10.7

Table 15-1

The metabolome of *E.coli* growing on glucose: the amounts of 103 metabolites

Comparison of k_m and substrate concentration for some metabolic enzymes

TABLE 15-2Relationship between Hill Coefficient and
the Effect of Substrate Concentration on
Reaction Rate for Allosteric Enzymes

Hill coefficient (n _н)	Required change in [S] to increase V _o from 10% to 90% V _{max}
0.5	×6,600
1.0	×81
2.0	×9
3.0	×4.3
4.0	×3

Table 15-2

Cooperative effect of allosteric ligand on enzymatic activity

Protein phosphorylation and dephosphorylation

Reactions far from equilibrium in cells are common points of regulation

Near-equilibrium steps are coupled with nonequilibrium step in a metabolic pathway

TABLE 15-3

Equilibrium Constants, Mass-Action Coefficients, and Free-Energy Changes for Enzymes of Carbohydrate Metabolism

		Mass-acti	on ratio, Q	Reaction near _equilibrium	Δ G ′°	∆G (kJ/mol)
Enzyme	$K'_{\rm eq}$	Liver	Heart	in vivo?*	(kJ/mol)	in heart
Hexokinase	1 × 10 ³	2 × 10 ⁻²	8 × 10 ⁻²	No	-17	-27
PFK-1	1.0 × 10 ³	9 × 10 ⁻²	3 × 10 ⁻²	No	-14	-23
Aldolase	$1.0 imes 10^{-4}$	1.2 × 10 ⁻⁶	9 × 10 ⁻⁶	Yes	+24	-6.0
Triose phosphate isomerase	4 × 10 ⁻²	†	$2.4 imes 10^{-1}$	Yes	+7.5	+3.8
Glyceraldehyde 3-phosphate dehydrogenase + phosphoglycerate kinase	2×10^{3}	6 × 10²	9.0	Yes	-13	+3.5
Phosphoglycerate mutase	1 × 10 ⁻¹	1 × 10 ⁻¹	1.2 × 10 ⁻¹	Yes	+4.4	+0.6
Enolase	3	2.9	1.4	Yes	-3.2	-0.5
Pyruvate kinase	2 × 10⁴	7 × 10 ⁻¹	40	No	-31	-17
Phosphoglucose isomerase	4 × 10 ⁻¹	3.1 × 10 ⁻¹	$2.4 imes 10^{-1}$	Yes	+2.2	-1.4
Pyruvate carboxylase + PEP carboxykinase	7	1 × 10 ⁻³	†	No	-5.0	-23
Glucose 6-phosphatase	8.5 × 10 ²	1.2×10^{2}	t	Yes	-17	-5.0

Source: K'_{eq} and Q from Newsholme, E.A. & Start, C. (1973) *Regulation in Metabolism*, Wiley Press, New York, pp. 97, 263. ΔG and $\Delta G'^{\circ}$ were calculated from these data.

*For simplicity, any reaction for which the absolute value of the calculated ΔG is less than 6 is considered near equilibrium.

[†]Data not available.

Table 15-3

Adenine nucleotides play special roles in metabolic regulation

Many ATP-using enzymes have k_m values between 0.1 and 1 mM, and the ATP concentration in a typical cell is about 5 to 10mM. If the [ATP] were to drop significantly, the rates of hundreds of reactions that involve ATP would decrease.

Organisms have evolved under strong pressure to develop <u>regulatory mechanisms</u> responsive to [ATP]/[ADP] ratio

Effect of ATP concentration on the initial reaction velocity of a typical ATP-dependent enzyme

TABLE 15-4Relative Changes in [ATP] and [AMP] When ATP Is Consumed

Co	Concentration beforeConcentration after		
Adenine nucleotide	ATP depletion (тм)	ATP depletion (тм)	Relative change
АТР	5.0	4.5	10%
ADP	1.0	1.0	0
АМР	0.1	0.6	600%

Table 15-4

[ATP] drops 10%, [AMP] increases for 5 folds

The levels of ATP and AMP reflect a cell's energy status. <u>AMP-activated protein kinase (AMPK)</u> can sense the decrease of [ATP]/[AMP] ratio and thus trigger a variety of cellular responses to raise this ratio.

Figure 15-8

Role of AMPK in carbohydrate and fat metabolism

15.2 Analysis of Metabolic Control

(self-study)

Eduard Buchner, 1860–1917

Unnumbered 15 p596 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company Rate-limiting step: a step determining the rate of metabolite flow, or flux, through a whole pathway.

Rate-limiting enzyme

Single rate-limiting step Multiple rate-limiting steps

The Contribution of Each Enzyme to Flux through a Pathway is Experimentally Measurable

In vitro assay

Intracellular assay

In vivo assay

Dependence of glycolytic flux in a rat liver homogenate on added enzyme

Metabolic control analysis

Flux control coefficient, CElasticity coefficient, ε is Response coefficient, R Flux control coefficient expresses the relative contribution of each enzyme to setting *the rate at which metabolites flow through the pathway* (flux, J).

- In a linear pathway, C can have any value from 0.0 to
 In a branched pathway, an enzyme in one branch can have a negative C.
- 2) *C* is **not a constant**. Value depends on the concentrations of substrate and effectors
- 3) For any complete pathway, the **sum** of flux control coefficients must equal **1.0**

Figure 15-10 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Box 15-1 figure 1 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

flux control coefficient, C

$$C_{\mathrm{xase}}^{J_{\mathrm{ydh}}} \approx rac{\partial J_{\mathrm{ydh}}}{J_{\mathrm{ydh}}} \Big/ rac{\partial E_{\mathrm{xase}}}{E_{\mathrm{xase}}} \approx rac{\partial J_{\mathrm{ydh}}}{\partial E_{\mathrm{xase}}} \cdot rac{E_{\mathrm{xase}}}{J_{\mathrm{ydh}}}$$

which is mathematically identical to

$$C_{\mathrm{xase}}^{J_{\mathrm{ydh}}} \approx rac{\partial \ln J_{\mathrm{ydh}}}{\partial \ln E_{\mathrm{xase}}}$$

Box 15-1 figure 2

C is not a constant, it depends on the starting E_{xase} from which the change in enzyme level takes place. A value near 1.0 means that the [E] wholly determines the flux through the path; a value 0.0 means that the [E] does not limit the flux

Elasticity coefficient, $\boldsymbol{\varepsilon}$ expresses quantitatively the responsiveness of a single enzyme to changes in the concentration of a metabolite or regulator.

- 1) Is an intrinsic property of an enzyme.
- 2) Reflects the **sensitivity** of an enzyme to substrate and effector concentrations.

3) An enzyme with typical Michaelis-Menten kinestics has an $\boldsymbol{\varepsilon}$ value ranging from near 0.0 to about 1.0 in response to substrate concentrations.

4) For allosteric enzymes that show positive cooperativity, $\boldsymbol{\varepsilon}$ exceed 1.0, but it cannot exceed the hill coefficient, which is typically between 1.0 and 4.0

An enzyme with typical Michaelis-Menten kinestics has an **Elasticity coefficient** value from 0.0 to 1.0

elasticity, ε

Response coefficient, *R* expresses the effect of an outside factor (such as a hormone or growth factor) on the flux through a pathway

$$R_P^{J_{ ext{ydh}}} = C_{ ext{xase}}^{J_{ ext{ydh}}} ullet arepsilon_P^{ ext{xase}}$$

response coefficient, R.

$$R_P^{J_{\mathrm{ydh}}} = rac{\partial J_{\mathrm{ydh}}}{\partial P} oldsymbol{\cdot} rac{P}{J_{\mathrm{ydh}}}$$

P, concentration of parameter/controlling factor

Metabolic control analysis has been applied to carbohydrate metabolism, with surprising results

 PFK-1 shows regulatory mechanism (acts to maintain metabolite concentration) in glycolysis. *Five fold increase of [PKF-1] led to a change in flux through glycolysis of less than 10% in yeast.*

Hexokinase shows **control mechanism** (acts to alter the flux through a pathway) in glycolysis.

2) In glycogen synthesis pathway **Glut4** and **hexokinase** show control mechanism, **glycogen synthase** shows regulatory mechanism, contradictory with conventional wisdom that the later is the locus of flux control.

Figure 15-12

Control of glycogen synthesis from blood glucose in muscle

Metabolic control analysis suggests a general method for increasing flux through a pathway

Flux toward a specific product is most effectively increased by **raising the concentration of all enzymes** in the pathway

The **urea** output of rat increases **fourfold** in response to high protein diet, and the amount of all **enzymes** in urea cycle increase **two to three fold** accordingly.

15.3 Coordinated regulation of glycolysis and gluconeogenesis

Futile cycle/substrate cycle

Simultaneous interconversion between substrate and product, leading to dissipation of chemical energy as heat

 $\begin{array}{l} ATP \ + \ fructose \ 6-phosphate \ \overbrace{\ }^{\ } \overrightarrow{\ } \overrightarrow$

The sum of these two reactions is

 $ATP + H_2O \longrightarrow ADP + P_i + heat$

HK isozymes of muscle and liver are affected differently by their product, G-6-p

	Liver	Myocyte
HKs	HK4 (glucokinase)	HK2, HK1
	$K_{\rm m}$ 10mM	$K_{\rm m}$ 0.1mM
	not inhibited by G-6-P	reversibly inhibited by G-6-p
	transcriptionally activated by insulin	+
GLUTs	GLUT2	GLUT4
	$K_{\rm t}$ 17mM	$K_{\rm t}$ 5mM
	insulin irresponsive	regulated by insulin

The information in this table indicates that **muscle consumes Glu**, using it for energy production, whereas **liver maintains blood glucose homeostasis** by consuming or producing glucose, depending on the prevailing blood [Glu].

Comparison of kinetic properties of HK4 and HK1 *Note that HK1,2 and 3 show similar kinetic properties*

Figure 15-15

Regulation of HK4 by sequestration in the nucleus.

High level of Glu competes with F-6-P for binding with regulatory protein; F-6-P increases the affinity between regulatory protein and HK4 by acting as an allosteric regulator for this protein.

TABLE 11-3 Glucose Transporters in Humans

Transporter		Tissue(s) where expressed		<i>К</i> , (m м)*	Role [†]
GLUT1	Ubiquitous	3	Basal glucose uptake		
GLUT2	Liver, pancreatic islets, intestine	17	In liver and kidney, removal of excess glucose from blood; in pancreas, regulation of insulin release		
GLUT3	Brain (neuronal), testis (sperm)	1.4	Basal glucose uptake		
GLUT4	Muscle, fat, heart	5	Activity increased by	insulin	
GLUT5	Intestine (primarily), testis, kidney	6 [‡]	Primarily fructose trai	nsport	
GLUT6	Spleen, leukocytes, brain	>5	Possibly no transport	er function	
GLUT7	Small intestine, colon	0.3	—		
GLUT8	Testis	~2	_		
GLUT9	Liver, kidney	0.6	_		
GLUT10	Heart, lung, brain, liver, muscle, pancreas, kidney	0.3 [§]	_		
GLUT11	Heart, skeletal muscle, kidney	0.16	-		
GLUT12	Skeletal muscle, heart, prostate, small intestine	—	_		

*K, for glucose, except as noted, from Augustin, R. (2010) The protein family of glucose transport facilitators: it's not only about glucose after all. IUBMB Life 62, 315–333.

[†]Dash indicates role uncertain.

^{*}*K*_m for fructose.

[§]*K*_m for 2-deoxyglucose.

Table 11-3

Figure 11-30a

Membrane topology of the glucose transporter GLUT1

Figure 11-30c Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Figure 11-30b

Crystal structure of the human glucose transporter GLUT1 *Nature. 2014 Jun 5;510(7503):121-5 Epub 2014 May 18.*

Crystal structure of the human glucose transporter GLUT1 *Nature. 2014 Jun 5;510(7503):121-5 Epub 2014 May 18.*

Structure and mechanism of the mammalian fructose transporter GLUT5

Nature. 2015 Oct 15;526(7573):397-401

Inward-open

Inward-occluded

Box 11-1 figure 1

Transport of glucose into a myocyte by GLUT4 is regulated by insulin

PFK-1 and F-1,6-BPase are reciprocally regulated

Surface contour image of *E.coli* PFK-1

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

ATP is an allosteric inhibitor for PFK-1

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Summary of the regulators affecting PFK-1 activity

Figure 15-17

Reciprocal Regulation of FBPase-1 and PFK-1

Figure 15-18c Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

F2,6BP is a potent allosteric regulator of PFK-1 and FBPase-1

Unnumbered 15 p605 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

F2,6BP activates PFK-1

Figure 15-18b Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

FBPase-1 activity is inhibited by F26BP

Figure 15-19a *Lehninger Principles of Biochemistry,* Sixth Edition © 2013 W. H. Freeman and Company

PFK-2 and FBPase-2 are two separate enzymatic activities of a single, bifunctional protein

Figure 15-19b

The activities of PFK-2 and FBPase-2 are reciprocally regulated by insulin and glucagon

Xylulose 5-phosphate is a key regulator of carbohydrate and fat metabolism

- 1) Promotes glycolysis by activating phosphoprotein phosphatase 2A (PP2A) which in turn increases PFK-2 activity by dephosphorylating it.
- 2) Increases the synthesis of all the enzymes required for fatty acid synthesis

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

The structure of PP2A

PP2A recognizes several target proteins, its specificity provide by the regulatory subunit

Figure 15-21

Covalent and allosteric regulations of isozymes of pyruvate kinase

The gluconeogenic conversion of pyruvate to PEP is under multiple types of regulation

Transcriptional regulation of glycolysis and gluconeogenesis changes the number of enzyme molecules

More than **150** genes are transcriptionally regulated by insulin, the majority of them are transcriptionally activated and the remaining of them are suppressed

Insulin \longrightarrow Protein kinases $\rightarrow \dots \rightarrow$	activator	Targets → mRNA ↑
ERK Akt/PKB	Transcription suppressor	\longrightarrow mRNA \downarrow

. . .

TABLE 15-5Some of the Genes Regulated by Insulin

Change in gene expression	Pathway
Increased expression	
Hexokinase II	Glycolysis
Hexokinase IV	Glycolysis
Phosphofructokinase-1 (PFK-1)	Glycolysis
Pyruvate kinase	Glycolysis
PFK-2/FBPase-2	Regulation of glycolysis/gluconeogenesis
Glucose 6-phosphate dehydrogenase	Pentose phosphate pathway (NADPH)
6-Phosphogluconate dehydrogenase	Pentose phosphate pathway (NADPH)
Pyruvate dehydrogenase	Fatty acid synthesis
Acetyl-CoA carboxylase	Fatty acid synthesis
Malic enzyme	Fatty acid synthesis (NADPH)
ATP-citrate lyase	Fatty acid synthesis (provides acetyl-CoA)
Fatty acid synthase complex	Fatty acid synthesis
Stearoyl-CoA dehydrogenase	Fatty acid desaturation
Acyl-CoA–glycerol transferases	Triacylglycerol synthesis
Decreased expression	
PEP carboxykinase	Gluconeogenesis
Glucose 6-phosphatase (catalytic subunit)	Glucose release to blood

ChREBP(carbohydrate response element binding protein) is a transcription factor responsible for transactivation of enzymes needed for fat synthesis

ChoRE (carbohydrate response element)

SREBP-1c, a member of the family of <u>s</u>terol <u>r</u>egulatory <u>e</u>lement <u>b</u>inding <u>p</u>rotein

CREB, cyclic AMP response element binding protein

Insulin inhibits gluconeogenesis by suppressing **FOXO1** transcriptional activity

Figure 15-24

Figure 15-25 *Lehninger Principles of Biochemistry*, Sixth Edition © 2013 W. H. Freeman and Company

The PEP carboxykinase promoter region, showing the complexity of regulatory input to this gene