CHAPTER 16
The Citric Acid Cycle
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* Three stages of cellular respiration
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* Three stages of cellular respiration
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16.1 Production of Acetyl-CoA
(Activated Acetate)



Pyruvate is oxidized to acetyl-CoA and CO, by PDH
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Figure 16-2
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The PDH complex require 5 coenzymes

 thiamine pyrophosphate (TPP)

- NADH + H*
O\\‘ /O CO, .

(l;‘ TPP, Z 0 H NAD ?H
Mg2+ \‘% /

C=0 C —_— CH,
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CI—:{3 decarboxylase CHj; dehydrogenase CHj;

Pyruvate Acetaldehyde Ethanol

e flavin adenine dinucleotide(FAD)

* nicotinamide adenine dinucleotide (NAD)

e coenzyme A (CoA, CoA-SH)

*lipoate



e The PDH complex require 5 coenzymes
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coenzyme A (CoA, CoA-SH)
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* PDH complex of E. coli

Number of Prosthetic

Enzyme Abbreviation chains group Reaction catalyzed

Pyruvate E, 24 TPP Oxidative decarboxylation
dehydrogenase of pyruvate
component

Dihydrolipoyl E, 24 Lipoamide Transfer of acetyl group
transacetylase to CoA

Dihydrolipoyl E, 12 FAD Regeneration of the

dehydrogenase

oxidized form of lipoamide




e The PDH complex

Cryoelectron micrograph of PDH complexes isolated from
bovine kidney. 50 nm in diameter—more than five times the
size of an entire ribosome.



e The PDH complex
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e E2 has three functionally distinct domains
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e Reactions of the pyruvate dehydrogenase complex
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e Reactions of the pyruvate dehydrogenase complex

2. Oxidation
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e Reactions of the pyruvate dehydrogenase complex

4-5. Regeneration of oxidized lipoamide
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e Reactions of the pyruvate dehydrogenase complex
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Oxidative decarboxylation of pyruvate to acetyl-CoA by the PDH



e The PDH complex
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Reactions of the pyruvate dehydrogenase complex

* Substrate channeling
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e Reactions of the pyruvate dehydrogenase complex

*Involvement of Vitamins
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e Summary 16.1

* Pyruvate, the product of glycolysis, is converted to acetyl-CoA,
the starting material for the citric acid cycle, by the pyruvate
dehydrogenase (PDH) complex.

* The PDH complex is composed of multiple copies of three
enzymes: pyruvate dehydrogenase, E1 (with its bound cofactor
TPP); dihydrolipoyltransacetylase, E2 (with its covalently bound
lipoyl group); and dihydrolipoyl dehydrogenase, E3 (with its
cofactors FAD and NAD).

* E1 catalyzes first the decarboxylation of pyruvate, producing
hydroxyethyl-TPP, and then the oxidation of the hydroxyethyl
group to an acetyl group.



e Summary 16.1

* E2 catalyzes the transfer of the acetyl group to coenzyme A,
forming acetyl-CoA.

* E3 catalyzes the regeneration of the disulfide (oxidized) form of
lipoate; electrons pass first to FAD, then to NAD*.

* The long lipoyllysyl arm swings from the active site of E1 to E2
to E3, tethering the intermediates to the enzyme complex to
allow substrate channeling.

* The organization of the PDH complex is very similar to that of
the enzyme complexes that catalyze the oxidation of a-
ketoglutarate and the branched-chain a-keto acids.



16.2 Reactions of the Citric Acid Cycle



e Overview of the citric acid cycle
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o Claisen condensation:

Acetyl-CoA methyl group of
o acetyl-CoA converted to
0 I methylene in citrate.
CH;—C—S-CoA
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introduces —OH <00 - C co0 ~
group for next
oxidation step. p
umarase (3) NADH
aconitase
H,0 (Rehydratlon)
00 cu oo~
Fumarate ﬁH H— c Coo - )
. Isocitrate
| e
- FADH I
6 e ’ isocitrate COO - 9
Dehvd o succinate Sycrogenase Oxidative decarboxylation:
in:roy dt::’t?:::flon. dehydrogenase —OH group oxidized to
bonyl, whichin t
double bond a-ketoglutarate co ;:ar.rony ‘:; - :)n u:'n ;
initiates methylene C[H 2R succinyl-CoA dehydrogenase CIH a=R00R] baa ::ta;’t:.s o ecar :xy.atlon
e y stabilizing carbanion
oxidation sequence. CIZH 3 Wa:e complex CIH 2 formed on adjacent carbon.
in Co0 ~ — = C=0
AU c||'l e | a-Ketoglutarate
o Co0 ~
e CoA-SH rl.H 3 CoA-SH
GTP C—S-CoA COo,
(ATP)  Gpp | o

Substrate-level ( ADP)
phosphorylation: energy of Succ:myI -CoA
thioester conserved in

phosphoanhydride bond of

GTP or ATP.

Oxidative decarboxylation:
pyruvate-dehydrogenase-like
mechanism; dependent on
carbonyl on adjacent carbon.

Figure 16-7



(@ Formation of Citrate
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(@ Formation of Citrate
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(@ Formation of Citrate

Citrate synthase

The thioester linkage in acetyl-CoA activates the
methyl hydrogens. Asp375 abstracts a proton
from the methyl group, forming an enolate
intermediate. The intermediate is stabilized by
hydrogen bonding to and/or protonation by
His274 (full protonation is shown).
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N
js320 ‘{\/'{J

Figure 16-9 part 1
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(@ Formation of Citrate
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(@ Formation of Citrate
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(2) Formation of Isocitrate via cis-Aconitate
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(2) Formation of Isocitrate via cis-Aconitate
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Box 16-3 figure 1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Citrate: A Symmetric Molecule That Reacts Asymmetrically



(2) Formation of Isocitrate via cis-Aconitate
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(2) Formation of Isocitrate via cis-Aconitate

This bond This bond can
C‘ZHZCOO' . cannot be - be positioned
. positioned correctly and
e / S“fgﬁ;'ble é correctly (l: / is attacked.
I B X/‘\Z and is not X/‘\Z
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Box 16-3 figure 2
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Aconitase removes the pro-RH of the the pro-R arm.



(2) Formation of Isocitrate via cis-Aconitate

Citrate

Iron-sulfur center in aconitase



Moonlighting Enzymes: Proteins with More Than One Job

Low [iron] High [iron]

IRP: iron regulatory protein

* Ferritin (k82 H): store iron in cells. One
molecule of ferritin can bind 4500 molecules

of ferric.

* Transferrin (¥8k 85 H): transport ferric from %@

digestive tract and cellular storage to bone
marrow for blood cell production. TF-{Fe*],




Moonlighting Enzymes: Proteins with More Than One Job

Low [iron] High [iron]

0 [N
— q O E &
v
IRP bound to iron response element (IRE)? Yes No
Ferritin mRNA
Ferritin mRNA translation Repressed Activated
5 AAA(A), 3’ Eerriti -
IRE erritin synthesis Decreased Increased

Transferrin receptor

(TfR) mRNA
' ii ii ii ii ii ’ TfR mRNA stability Increased Decreased
5 AAA(A), 3 TfR synthesis

IREs Increased Decreased

Box 16-1 figure 1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



Moonlighting Enzymes: Proteins with More Than One Job

Box 16-1 figure 2
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



(8 Oxidation of isocitrate to a-ketoglutarate and CO,
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(8 Oxidation of isocitrate to a-ketoglutarate and CO,

CIOO_
CH, NAD(P)* NAD(P)H + H™
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| \o— isocitrate
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Figure 16-11 part 1

isocitrate dehydrogenase
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Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W.H.Freeman and Company

Oxalosuccinate
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Figure 16-11 part 2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H.Freeman and Company
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(8 Oxidation of isocitrate to a-ketoglutarate and CO,
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Figure 16-11 part 3
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H.Freeman and Company



() Oxidation of a-ketoglutarate to Succinyl-CoA and Co,

CoA-SH

CH,—COO0"~ NAD™ CH>,—COO"~

I NADH |

(|:H2 CIH 2 + CO3

>

C=0 a-ketoglutarate C—S-CoA

| - dehydrogenase |
Coo complex O

a-Ketoglutarate (E1+E2+E3) Succinyl-CoA

AG'° =-33.5 kJ/mol

Unnumbered 16 p644
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



() Oxidation of a-ketoglutarate to Succinyl-CoA and Co,

Citric acid cycle Pyruvate dehydrogenase Oxidation of isoleucine
complex (leucine, valine)
I g T
_ _ |
00C —CH, —CH, —C —CO0O0 CH;—C—CO0 CH; —CH,—CH —C—CO00"
a-Ketoglutarate Pyruvate a-Keto acid
: from isoleucine
4 e S-CoA S-CoA
NAD™* E - E +
NAD NAD
CO, < /
2=~ NADH €0; NADH €O |\, NADH
(o] (o) CH; o
~ | // \d // I //
00C —CH; —CH; —C CH; —C CH;—CH,—CH —C\
S-CoA \S-CoA S-CoA
Succinyl-CoA Acetyl-CoA a-Methylbutyryl-CoA

Figure 16-12
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Conserved mechanism for oxidative decarboxylation
Divergent evolution



(B) Conversion of Succinyl-CoA to Succinate

CH>,—CO0O0"~ CO0~
GDP + P; GTP CoA-SH

CH, \\ // CH,

L=sLoh = succinyl-CoA CH2

0o synthetase COO-

Succinyl-CoA (succinic thiokinase) Succinate

AG'° =-2.9 kJ/mol

Unnumbered 16 p645
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

nucleoside

diphosphokinase
GTP + ADP - > GDP + ATP




(B) Conversion of Succinyl-CoA to Succinate

A Succinyl-CoA
Succinyl-CoA
synthetase o o
GTP 246 \C/
His— |
-
(3 o
GDP [
C
7
O/ S-CoA
Phosphohistidyl
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enzyme
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CH, His—
I
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Figure 16-13a

The succinyl-CoA
synthetase reaction



(B) Conversion of Succinyl-CoA to Succinate

B subunit

[}su&unit
power helix

Phosphatg group

a subunit _
power I)eli")"(’ : D
-~

S §

a subunit

Figure 16-13b
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



e Names of enzymes

* Synthase:

 catalyze condensation reactions in which no nucleoside
triphosphate (ATP,GTP, and so forth) is required as an energy source.

* Synthetase:

e catalyze condensation reactions that do use ATP or another
nucleoside triphosphate as a source of energy for the synthetic
reaction.

* Ligase:

e catalyze condensation reactions in which two atoms are joined,
using ATP or another energy source.

* Lyase:

e catalyze cleavages (or, in the reverse direction, additions) in which
electronic rearrangements occur.

* Kinase v.s. phosphatase v.s. phosphorylase



(6) Conversion of Succinate to Fumarate

COO

FAD FADH- H CO0 —
H—C—H \_/ N (li o
G ) succinate -00C /C \H
COO ~ dehydrogenase
Succinate  (SDH) Fumarite

AG'° = 0 kJ/mol

Unnumbered 16 p646
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

This enzyme is tightly bound to the mitochondrial inner membrane



(6) Conversion of Succinate to Fumarate

o O~ O\C/O_
\c/ CH,
C:Hz CH,
C C
0/ \O_ 0/ \O_
Malonate Succinate

Unnumbered 16 p647a
Lehninger Principles of Bio

Malonate is a competitive inhibitor of succinate dehydrogenase



(@) Hydration of Fumarate to Malate
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Oxidation of Malate to Oxaloacetate

C°°_ NAD* NADH + H* C|°°_
|-|o—c—|-| \ / o=I
> CIHZ
COO‘ deh r:?:)ate@nase e
L-Malate yarog Oxaloacetate
(MDH)

AG’° = 29.7 kJ/mol

Unnumbered 16 p647d
Lehninger Principles of Biochemistry, Sixth Edition
©2013 W. H. Freeman and Company



o Claisen condensation:

Acetyl-CoA methyl group of
o acetyl-CoA converted to
0 I methylene in citrate.
CH;—C—S-CoA
Dehydrogenation: H:0  con-sH @
oxidation of —OH Citrate
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e The energy of oxidations in the cycle is conserved
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Figure 16-14



e Fully oxidation of glucose generates 32 ATP

AR R Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of
Glucose via Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid
Cycle, and Oxidative Phosphorylation

Number of ATP or reduced Number of ATP

Reaction coenzyme directly formed ultimately formed*
Glucose — glucose 6-phosphate —1ATP —i|
Fructose 6-phosphate — fructose 1,6-bisphosphate —1ATP —1]

2 Glyceraldehyde 3-phosphate — 2 1,3-bisphosphoglycerate 2 NADH 3or5*

2 1,3-Bisphosphoglycerate — 2 3-phosphoglycerate 2 ATP 2

2 Phosphoenolpyruvate — 2 pyruvate 2 ATP 2

2 Pyruvate — 2 acetyl-CoA 2 NADH 5

2 Isocitrate — 2 a-ketoglutarate 2 NADH 5

2 a-Ketoglutarate — 2 succinyl-CoA 2 NADH 5

2 Succinyl-CoA — 2 succinate 2 ATP (or 2 GTP) 2

2 Succinate — 2 fumarate 2FADH, 3

2 Malate — 2 oxaloacetate 2 NADH 5

Total 30-32

*This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH,. A negative value indicates consumption.

This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19-30 and
19-31.

Table 16-1

The efficiency of energy conservation for glucose degraded through
glycolysis, TCA cycle and oxidative phosphorylation is close to 65%.



e The citric acid cycle is an amphibolic pathway
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Figure 16-15

Biosynthetic precursors produced by an incomplete
citric acid cycle in anaerobic bacteria



e Anaplerotic reations
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e Anaplerotic reations

Reaction Tissue(s)/organism(s)

[ Pyruvate + HCO; + ATPZ“ 222 gyaloacetate + ADP + P, Liver, kidney ]
Phosphoenolpyruvate + CO, + GDP S anowee. oxaloacetate + GTP Heart, skeletal muscle
Phosphoenolpyruvate + HCO; ——=22Y"* . oxaloacetate + P, Higher plants, yeast, bacteria
Pyruvate + HCO; + NAD(P)H Z="2™. malate + NAD(P)* Widely distributed in eukaryotes

and bacteria

Table 16-2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H.Freeman and Company
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e Pyruvate carboxylase (PC)
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Figure 16-17 part 1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
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e Pyruvate carboxylase (PC)

Carboxyphos-
phate breaks
down to CO,.

>

C;rboxyphospha_te

Figure 16-17 part 2
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
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e Pyruvate carboxylase (PC)

CO, reacts with
3] biotin to form
H* carboxybiotin.

Carboxybiotinyl-enzyme

Figure 16-17 part 3
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



e Pyruvate carboxylase (PC)
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Figure 16-17 part 4
Lehninger Principles of Biochemistry, Sixth Edition
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e Pyruvate carboxylase (PC)

Figure 16-17 part5
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
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Figure 16-17 part 6
Lehninger Principles of Biochemistry, Sixth Edition
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e Biological tethers
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e Summary 16.2

Prosthetic
Step Reaction Enzyme group Type*
1 Acetyl CoA + oxaloacetate + H,O — Citrate a
citrate + CoA + H synthase
2a Citrate == cis-aconitate + H,O Aconitase Fe-S b
2b cis-Aconitate + H,O == isocitrate Aconitase Fe-S c
3 Isocitrate + NAD T ——= Isocitrate d+e
a-ketoglutarate + CO, + NADH dehydrogenase
4 a-Ketoglutarate + NAD ™ + CoA =—— a-Ketoglutarate Lipoic acid, d+e
succinyl CoA + CO, + NADH dehydrogenase FAD, TPP
complex
5 Succinyl CoA + P; + ADP =— Succinyl CoA f
succinate + ATP + CoA synthetase
6 Succinate + FAD (enzyme-bound) =— Succinate FAD, Fe-S e
fumarate + FADH,(enzyme-bound) dehydrogenase
7 Fumarate + HyO === L-malate Fumarase c
8 L-Malate + NAD" == Malate
oxaloacetate + NADH + H™ dehydrogenase

*Reaction type: (a) condensation; (b) dehydration; (c) hydration; (d) decarboxylation; (e) oxidation; (f) substrate-level phosphorylation.



e Summary 16.2

* The citric acid cycle is amphibolic, serving in both catabolism
and anabolism; cycle intermediates can be drawn off and used
as the starting material for a variety of biosynthetic products.

* When intermediates are shunted from the citric acid cycle to
other pathways, they are replenished by several anaplerotic
reactions, which produce four-carbon intermediates by
carboxylation of three-carbon compounds; these reactions are
catalyzed by pyruvate carboxylase, PEP carboxykinase, PEP
carboxylase, and malic enzyme. Enzymes that catalyze
carboxylations commonly employ biotin to activate CO, and to
carry it to acceptors such as pyruvate or phosphoenolpyruvate.



16.3 Regulation of the Citric Acid Cycle



e PDH is regulated by allosteric and covalent mechanisms
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e PDH is regulated by allosteric and covalent mechanisms
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e The citric acid cycle is controlled at several points
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Figure 16-19



e Substrate channeling in citric acid cycle

Substrate channeling
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in the citric acid cycle
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Figure 16-20



Some mutations in enzymes of the CAC lead to cancer

e Loss-of-function
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e |IDH1 is mutated in many diffuse gliomas
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PHD: HIF prolyl hydroxylase; vHL: von Hippel Lindau protein (E3); VEGF:
vascular endothelial growth factor; SLC2A: solute carrier family 2 member 1



e Summary 16.3

* The overall rate of the citric acid cycle is controlled by the rate
of conversion of pyruvate to acetyl-CoA and by the flux through
citrate synthase, isocitrate dehydrogenase, and a-ketoglutarate
dehydrogenase. These fluxes are largely determined by the
concentrations of substrates and products: the end products
ATP and NADH are inhibitory, and the substrates NAD* and ADP
are stimulatory.

* The production of acetyl-CoA for the citric acid cycle by the PDH
complex is inhibited allosterically by metabolites that signal a
sufficiency of metabolic energy (ATP, acetyl-CoA, NADH, and
fatty acids) and stimulated by metabolites that indicate a
reduced energy supply (AMP, NAD*, CoA).

* Complexes of consecutive enzymes in a pathway allow
substrate channeling between them.



16.4 The Glyoxylate Cycle



e Vertebrates cannot convert acetyl-CoA into glucose
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e The glyoxylate cycle
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e Glyoxysome

Lipid body

Glyoxysome Mitochondria

Figure 16-23

Electron micrograph of a germinating cucumber seed, showing a
glyoxysome, mitochondria, and surrounding lipid bodies



Relationship between the glyoxylate and citric acid cycles
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e Citric acid and glyoxylate cycle are coordinately regulated
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e Summary 16.4

* The glyoxylate cycle is active in the germinating seeds of some
plants and in certain microorganisms that can live on acetate as
the sole carbon source. In plants, the pathway takes place in
glyoxysomes in seedlings. It involves several citric acid cycle
enzymes and two additional enzymes: isocitrate lyase and
malate synthase.

* In the glyoxylate cycle, the bypassing of the two
decarboxylation steps of the citric acid cycle makes possible the
net formation of succinate, oxaloacetate, and other cycle
intermediates from acetyl-CoA. Oxaloacetate thus formed can
be used to synthesize glucose via gluconeogenesis.



e Summary 16.4

* \Vertebrates lack the glyoxylate cycle and cannot synthesize
glucose from acetate or the fatty acids that give rise to acetyl-
CoA.

* The partitioning of isocitrate between the citric acid cycle and
the glyoxylate cycle is controlled at the level of isocitrate
dehydrogenase, which is regulated by reversible
phosphorylation.



