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16.3 Regulation of the Citric Acid Cycle



e PDH is regulated by allosteric and covalent mechanisms
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e PDH is regulated by allosteric and covalent mechanisms
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e The citric acid cycle is controlled at several points
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e Substrate channeling in citric acid cycle
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Some mutations in enzymes of the CAC lead to cancer
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e |IDH1 is mutated in many diffuse gliomas
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e Summary 16.3

* The overall rate of the citric acid cycle is controlled by the rate
of conversion of pyruvate to acetyl-CoA and by the flux through
citrate synthase, isocitrate dehydrogenase, and a-ketoglutarate
dehydrogenase. These fluxes are largely determined by the
concentrations of substrates and products: the end products
ATP and NADH are inhibitory, and the substrates NAD* and ADP
are stimulatory.

* The production of acetyl-CoA for the citric acid cycle by the PDH
complex is inhibited allosterically by metabolites that signal a
sufficiency of metabolic energy (ATP, acetyl-CoA, NADH, and
fatty acids) and stimulated by metabolites that indicate a
reduced energy supply (AMP, NAD*, CoA).

* Complexes of consecutive enzymes in a pathway allow
substrate channeling between them.



16.4 The Glyoxylate Cycle



e Vertebrates cannot convert acetyl-CoA into glucose
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e The glyoxylate cycle
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e Glyoxysome
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Electron micrograph of a germinating cucumber seed, showing a
glyoxysome, mitochondria, and surrounding lipid bodies



Relationship between the glyoxylate and citric acid cycles
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e Citric acid and glyoxylate cycle are coordinately regulated
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e Summary 16.4

* The glyoxylate cycle is active in the germinating seeds of some
plants and in certain microorganisms that can live on acetate as
the sole carbon source. In plants, the pathway takes place in
glyoxysomes in seedlings. It involves several citric acid cycle
enzymes and two additional enzymes: isocitrate lyase and
malate synthase.

* In the glyoxylate cycle, the bypassing of the two
decarboxylation steps of the citric acid cycle makes possible the
net formation of succinate, oxaloacetate, and other cycle
intermediates from acetyl-CoA. Oxaloacetate thus formed can
be used to synthesize glucose via gluconeogenesis.



e Summary 16.4

* \Vertebrates lack the glyoxylate cycle and cannot synthesize
glucose from acetate or the fatty acids that give rise to acetyl-
CoA.

* The partitioning of isocitrate between the citric acid cycle and
the glyoxylate cycle is controlled at the level of isocitrate
dehydrogenase, which is regulated by reversible
phosphorylation.



CHAPTER 17
Fatty Acid Catabolism
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* Physiological roles of fatty acids

* Fatty acids are fuel molecules. They are stored as
triacylglycerols (also called neutral fats or triglycerides).

* Fatty acids are building blocks of phospholipids and
glycolipids.

* Many proteins are modified by the covalent attachment
of fatty acids, which targets the proteins to membrane
locations.

* Fatty acid derivatives serve as hormones and
intracellular messengers.



e Triacylglycerols (TAG)

* Triacylglycerides are composed of a glycerol backbone
to which 3 fatty acids are esterified.
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e Advantages to storing energy in triacylglycerols

1. Fatty acids, the long alkyl chains of TAG, are highly reduced
structure with an energy of complete oxidation (~38 kJ/g)
more than twice that for the same weight of carbohydrate or
protein. (high free energy yield)

2. TAGs are insoluble (unsolvated), and thus do not raise the
osmolarity of the cytosol.

3. TAGs are chemically inert, without the risk of undesired
chemical reactions with other cellular constituents.



e Triacylglycerols Are a Major Form of Stored Energy

Stored metabolic fuel in a 70-kg person

Energy Dry Weight Available Energy

Constituent (kJ/g dry weight) (g) (KJ)
Fat (adipos tissue) 37 15,000 555,000
Protein (muscle) 17 6,000 102,000
Glycogen (muscle) 16 120 1,920
Glycogen (liver) 16 70 1,120
Glucose (extracellular fluid) 16 20 320

Total 660,360

More fat is stored than protein and carbohydrate. Fat accounts
for approximately 83% of available energy.



e Triacylglycerols Are a Major Form of Stored Energy

* In mammals, the major site of triacylglycerol accumulation is
the cytoplasm of adipocytes.



17.1 Digestion, Mobilization and Transport of Fats



[

Fats ingested ( )
in diet

Gallbladder

e Processing of dietary lipids in vertebrates

Myocyte or adipocyte

_ Storage
e Fatty acids are
0'/eg oxidized as fuel
? co, or reesterified
for storage.

ATP

o Bile salts

Small intestine

emulsify dietary"

fats in the small IR H K , mucosa

intestine, forming
mixed micelles.

Intestinal lipases
degrade triacyl-
glycerols.
Fatty acids and other break-
down products are taken up
by the intestinal mucosa and
converted into triacylglycerols.

Lipoprotein lipase

Fatty acids enter cells.

Lipoprotein lipase, activated
by apoC-ll in the capillary,
converts triacylglycerols to
fatty acids and glycerol.

Chylomicrons move through
the lymphatic system and
bloodstream to tissues.

Triacylglycerols are incorporated,
with cholesterol and apolipoproteins,
into chylomicrons.

Chylomcron




e Molecular structure of a chylomicron
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Mobilization of Fat Stores
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e Mobilization of Fat Stores

* The release of metabolic energy, in the form of fatty acids, is
controlled by a complex series of interrelated cascades that
result in the activation of triglyceride hydrolysis.
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ATGL: adipose triglyceride lipase,
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e Lipolysis generates fatty acids and glycerol
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e Entry of glycerol into the glycolytic pathway
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e Fatty acid oxidation in mitochondria or peroxisomes

e Oxidation of fatty acids occurs in the mitochondria
and the peroxisomes.

M Short- and medium-chain fatty acids (SCFAs and MCFAs,
respectively), are oxidized exclusively in the mitochondria.

W Long-chain fatty acids (LCFAs: 12-16 carbons long) are
oxidized in both the mitochondria and the peroxisomes with
the peroxisomes exhibiting preference for 14-carbon and

longer LCFAs.

W Very-long-chain fatty acids (VLCFAs: C17-C26) are
preferentially oxidized in the peroxisomes.



Fatty acids must be activated before being oxidized
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Carnitine carries activated FA into mitochondria
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e Carnitine carries activated FA into mitochondria
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e Summary 17.1

* The fatty acids of triacylglycerols furnish a large fraction of the
oxidative energy in animals. Dietary triacylglycerols are
emulsified in the small intestine by bile salts, hydrolyzed by
intestinal lipases, absorbed by intestinal epithelial cells,
reconverted into triacylglycerols, then formed into chylomicrons
by combination with specific apolipoproteins.

* Chylomicrons deliver triacylglycerols to tissues, where
lipoprotein lipase releases free fatty acids for entry into cells.
Triacylglycerols stored in adipose tissue are mobilized by a
hormonesensitive triacylglycerol lipase. The released fatty acids
bind to serum albumin and are carried in the blood to the
heart, skeletal muscle, and other tissues that use fatty acids for
fuel.

* Once inside cells, fatty acids are activated at the outer
mitochondrial membrane by conversion to fatty acyl-CoA
thioesters. Fatty acyl-CoA that is to be oxidized enters
mitochondria in three steps, via the carnitine shuttle.



17.2 Oxidation of Fatty



e Stages of fatty acid oxidation
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e The B-oxidation pathway
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e The B-oxidation pathway
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e The B-oxidation pathway
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e Divergent evolution of B oxidation enzymes
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e Divergent evolution of B oxidation enzymes

(c) Mitochondrial very-long-chain-specific (d) Peroxisomal and glyoxysomal system
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Introduction of a carbonyl on the 3 carbon
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e Fatty acid is a superior energy source

® The complete oxidation of palmitate yields 106 ATP.
W Palmitoyl CoA + 7 FAD + 7 NAD*+7 CoA+ 7 H,0 =
7 FADH, + 7 NADH + 7 H* + 8 acetyl CoA
(FADH, - 1.5ATP; NADH - 2.5ATP; Acetyl CoA - 10ATP )
7X15+7X25+8X10=108
108-2 =106 ATP (6.6 ATP per Carbon atom)

L8R VA B Yield of ATP during Oxidation of One Molecule of Palmitoyl-CoA to CO,and H,0

Number of NADH Number of ATP

Enzyme catalyzing the oxidation step or FADH, formed ultimately formed*
Acyl-CoA dehydrogenase 7 FADH, 10.5
B-Hydroxyacyl-CoA dehydrogenase 7 NADH 17.5

Isocitrate dehydrogenase 8 NADH 20
a-Ketoglutarate dehydrogenase 8 NADH 20
Succinyl-CoA synthetase 8t

Succinate dehydrogenase 8 FADH, 12

Malate dehydrogenase 8 NADH 20

Total 108

*These calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH, oxidized and 2.5 ATP per NADH oxidized.

*GTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p. 526).



e Fatty acid is a superior energy source

Box 17-1 figure 1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company




e Fatty acid is a superior energy source
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e Oxidation of unsaturated fatty acids
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e Oxidation of unsaturated fatty acids
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e Oxidation of unsaturated fatty acids
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e Oxidation of odd-number fatty acids
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e Coenzyme B12

H H g H H o
\ c| c| c 7 coenzyme B12‘ . c| (|: c 7
|'I| (I.'. \o— rr:ethylmalonyI-CoA (l: |!| \0—
/ \ mutase / \
o) S-CoA O/ S-CoA
L-Methylmalonyl-CoA Succinyl-CoA
| | coenzyme B, | |
—C —C— = > —_C —C—
I I I I
H X X H

Box 17-2 figure 1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W.H. Freeman and Company



e Regulation of Fatty Acid Oxidation
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e Regulation of Fatty Acid Oxidation

Transcription factors turn on the synthesis of proteins
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Peroxisomes also carry out  oxidation

Mitochondrion

Peroxisome/glyoxysome

(o}

/' N\

R= CHZ_ CHz_ C

S-CoA
Resplratory( FAD )( FAD ‘YHZOZ ‘
) chain i
H,0 FADH, FADH, W
AT H,050, ‘
I
R—C=C— C
I > s-con
H
H,0 * H,0
OH
| A°
R—C—cH—c_
I S-CoA
H
o . NAD* NAD* €«
2 Respiratory \ NADH exported
chain ! for reoxidation
H,0 ) NADH NADH -¥
ATP [e)
7 o
ReC o ~el
S-CoA
CoASH * CoASH
2 0o
R— C\
S-CoA
+
Citric z 0 Acetyl-CoA |
acid «--- CH3—C\ -———>

exported
cycle S-CoA y

»The first oxidation step is
catalyzed by acyl-CoA
oxidases which is coupled
to the reduction of O, to
H,O, by catalase.

» Octanoyl-coenzyme A is
the endpoint of B-oxidation
In peroxisomes.



e Glyoxysomes use acetyl-CoA for biosynthesis
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e The ® oxidation of fatty acids in the ER
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e The a oxidation of phytanic acid in the peroxisomes
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Figure 17-18 part 1
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e The a oxidation of phytanic acid in the peroxisomes
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e Summary 17.2
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e Summary 17.2

* Malonyl-CoA, an early intermediate of fatty acid synthesis,
inhibits carnitine acyltransferase |, preventing fatty acid entry into
mitochondria. This blocks fatty acid breakdown while synthesis is
occurring.

» Oxidation of unsaturated fatty acids requires two additional
enzymes: enoyl-CoA isomerase and 2,4-dienoyl-CoA reductase.

* Odd-number fatty acids are oxidized by the B-oxidation pathway
to yield acetyl-CoA and a molecule of propionyl-CoA. This is
carboxylated to methylmalonyl-CoA, which is isomerized to
succinyl-CoA in a reaction catalyzed by methylmalonyl-CoA
mutase, an enzyme requiring coenzyme B12.



e Summary 17.2

* Peroxisomes of plants and animals, and glyoxysomes of plants,
carry out B oxidation in four steps similar to those of the
mitochondrial pathway in animals. The first oxidation step,
however, transfers electrons directly to O,, generating H,0.,.

* The reactions of m oxidation, occurring in the endoplasmic
reticulum, produce dicarboxylic fatty acyl intermediates, which
can undergo B oxidation at either end to yield short dicarboxylic
acids such as succinate.

* The reactions of a oxidation degrade branched fatty acids such
as phytanic acid.



17.3 Ketone Bodies



e “Fats burn in the flame of carbohydrates”
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e Ketone Body
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Ketone bodies are important fuel
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Ketone bodies are important fuel
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Ketone bodies are overproduced during starvation
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e Diabetic ketoacidosis (DKA)

Ketone bodies and diabetes mellitus
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e Diabetic ketoacidosis (DKA)
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e Summary 17.3

* The ketone bodies (acetone, acetoacetate, and B-hydroxybutyrate)
are formed in the liver. The latter two compounds serve as fuel
molecules in extrahepatic tissues, through oxidation to acetylCoA
and entry into the citric acid cycle.

» Overproduction of ketone bodies in uncontrolled diabetes or
severely reduced calorie intake can lead to acidosis or ketoacidosis.



The limitation of biosynthesis in humans have
important consequences

The bulk of the available stored fuel in humans is fat, however,
many peripheral tissues obtain their energy from breakdown of
glucose, most notable is the brain, which requires 100~150g of
glucose per day. Human cannot convert stored fat to either
glucose or glucogenic amino acids. Moreover, humans can
synthesize only 810 of 20 amino acids de novo from glucogenic
precursor. These metabolic limitations have several consequences:




1. The human diet must include glucogenic fuel to supply
peripheral tissues with glucose.

2. During even the normal overnight fast, some muscle protein is
broken down to supply precursors for gluconeogenesis.

3. Resynthesis of the degraded protein, which normally occurs

when the fast is broken, requires that the diet contain the 10
essential amino acids.

4. During more prolonged fasting, the daily demand (about 75g )
on protein reserves for gluconeogenesis quickly becomes
intolerable. Under these conditions the brain switches to
utilization of ketone bodies as its principal energy source,
thereby sparing muscle protein.



5. Whereas adults can tolerate prolonged fasting resulting in loss
of up to % of normal body weight without harm, children can
not, because normal growth requires continued protein

synthesis. Protein deficiency in children leads to stunted

growth and the pathological condition known as kwashiorkor,
which is characterized by apathy, edema, and low levels of
many key enzymes, and is one of the most widespread children
afflictions in the world.



