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e Oxidative degradation of amino acids occurs-

* During the normal synthesis and degradation of
cellular proteins, some amino acids that are released
from protein breakdown and are not needed for new
protein synthesis undergo oxidative degradation.

* When a diet is rich in protein and the ingested amino
acids exceed the body’s needs for protein synthesis,
the surplus is catabolized; amino acids cannot be
stored.

* During starvation or in uncontrolled diabetes mellitus,
when carbohydrates are either unavailable or not
properly utilized, cellular proteins are used as fuel.



e Overview of amino acid catabolism in mammals.
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18.1 Metabolic Fates of Amino Groups



e Dietary Protein Is Degraded to Amino Acids
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e Dietary Protein Is Degraded to Amino Acids
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e Dietary Protein Is Degraded to Amino Acids
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e Activation of zymogens by proteolytic cleavage
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e amino acid specificities of proteases
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e Dietary Protein Is Degraded to Amino Acids
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Amino group catabolism
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Excretory forms of nitrogen
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Figure 18-2b
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



Enzyme-catalyzed transamination
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Figure 18-4
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



e All aminotransferases have PLP as cofactor

OH CH3 OH CHs
Pyridoxal phosphate Pyridoxamine
(PLP) phosphate

Figure 18-5a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company



e All aminotransferases have PLP as cofactor
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e PLP participates in aminotransferation
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e PLP participates in a variety of reactions of amino acids
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Aminotransferase are named for the amino group donor

* ALT (alanine aminotransferase ) or GPT (glutamate-pyruvate
transaminase)
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e Assays for Tissue Damage

The concentration of AST and ALT in different organs.

organs AST (U/g) ALT (U/g)
heart 156000 7100
liver 142000 44000
Skeletal muscle 99000 4800
kidney 91000 19000
spleen 14000 1200
lung 10000 700
serum 20 16

AST and ALT are important in the diagnosis of heart and liver

damage caused by heart attack, drug toxicity, or infection.



e Oxidative deamination in the Liver
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In hepatocytes, glutamate 1s transported from the cytosol into
mitochondria, where 1t undergoes oxidative deamination
catalyzed by L-glutamate dehydrogenase (GDH).



e Oxidative deamination in the Liver
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* GDH is allosterically negatively regulated by GTP and
positively regulated by ADP.

* GDH is the only enzyme that can use either NAD* or NADP*
as the acceptor of reducing equivalents.

* Transdeamination: combined action of an aminotransferase
and glutamate dehydrogenase



¢ Glutamine Transports Ammonia in the Bloodstream
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¢ Glutamine Transports Ammonia in the Bloodstream
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Glutamine is a nontoxic transport form of ammonia, it
is normally present in blood in much higher
concentration than other amino acids.



Alanine Transports Ammonia from Skeletal Muscles
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e Alanine Transports Ammonia from Skeletal Muscles

e
Muscle: ATP produced by
glycolysis for rapid contraction.
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Ammonia Is Toxic to Animals

* The terminal stages of ammonia intoxication in humans are
characterized by onset of a comatose state ( &1K)
accompanied by cerebral edema (fixi7K J#) from the
depletion of ATP and uptake of water.
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e Ammonia Is Toxic to Animals
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e SUMMARY 18.1

* Humans derive a small fraction of their oxidative energy from
the catabolism of amino acids. Amino acids are derived from the
normal breakdown (recycling) of cellular proteins, degradation
of ingested proteins, and breakdown of body proteins in lieu of
other fuel sources during starvation or in uncontrolled diabetes
mellitus.

* Proteases degrade ingested proteins in the stomach and small
intestine. Most proteases are initially synthesized as inactive
zymogens.

* An early step in the catabolism of amino acids is the separation
of the amino group from the carbon skeleton. In most cases, the
amino group is transferred to a-ketoglutarate to form glutamate.
This transamination reaction requires the coenzyme pyridoxal
phosphate (PLP).



e SUMMARY 18.1

* Glutamate is transported to liver mitochondria, where
glutamate dehydrogenase (GDH) liberates the amino group
as ammonium ion (NH,*). Ammonia formed in other tissues
is transported to the liver as the amide nitrogen of
glutamine or, in transport from skeletal muscle, as the amino
group of alanine.

* The pyruvate produced by deamination of alanine in the
liver is converted to glucose, which is transported back to
muscle as part of the glucose-alanine cycle.



18.2 Nitrogen Excretion and the Urea Cycle



e Excretory forms of nitrogen
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The carbon atoms of urea and uric acid are highly oxidized.



e Urea Cycle
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e Urea Cycle
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Synthesis of Carbamoyl Phosphate
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e Carbamoyl Phosphate Synthetase | (CPS1) Mechanism
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Figure 18-11a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
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Urea Cycle
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e Amino Acids in Urea Cycle
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e (1) Citrulline formation in mitochondrial matrix
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e (2 argininosuccinate formation in cytosol
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e (3 arginine and fumarate formation in cytosol
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* This is the only reversible reaction in urea cycle.



e (@ Urea and ornithine formation in cytosol
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e Urea Cycle
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e The Citric Acid and Urea Cycles Can Be Linked
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e “The Krebs bicycle”
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malate-aspartate shuttle in liver, kidney and heart
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e Glycerol 3-phosphate shuttle in muscle and brain
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Regulation of Urea Cycle

* Long-term Regulation

* All five enzymes are synthesized at higher rates in starving
animals and in animals on very-high-protein diets than in
well-fed animals eating primarily carbohydrates and fats.
Animals on protein-free diets produce lower levels of urea

cycle enzymes.

* Short-term Regulation
e allosteric regulation of CPS1



e Allosteric Regulation of CPS1
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e Genetic Defects in the Urea Cycle Can Be Life-Threatening

* The absence of a urea cycle enzyme can result in
hyperammonemia (5 I.ZE) or in the buildup of one or
more urea cycle intermediates.

* a protein-free diet is not a treatment option.

Conditionally
Nonessential essential* Essential
Alanine Arginine Histidine
Asparagine Cysteine Isoleucine
Aspartate Glutamine Leucine
Glutamate Glycine Lysine
Serine Proline Methionine
Tyrosine Phenylalanine
Threonine
Tryptophan
Valine

*Required to some degree in young, growing animals and/or sometimes during illness.



e Treatment for deficiencies in urea cycle enzymes

* Benzoate (X HZ) treatment

COO”

+ CoA-SH

Benzoate
ATP
AMP + PP,
O S-CoA
\\C/

Benzoyl-CoA

Benzoyl-CoA |

+
H3N e CHZ T u COO_
[Glycine
CoA-SH

A

O NH—CH,—COO
\/ .

ic)
Hippurate
(benzoylglycine)




Phenylbutyrate (78 | %)

CH,—CH,—CH,— COO0"

Phenylbutyrate

CoA-SH
B oxidation
Acetyl-CoA

— COO0"

© + CoA-SH

Phenylacetate
ATP
AMP + PP,
CHz—C—S CoA

©

Phenylacetyl-CoA
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i
CH,—C—S-CoA

Phenylacetyl-CoA
COoO~

[- NH,
Glutamine
K—» CoA-SH
6 aolo
CH, —(I!—NH — éH
H,
H,
=0

Phenylacetylglutamine I
NH,
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Carbamoyl glutamate

o) CO0~ O COO™
H,N —L!—NH —(:Z—H CH; —(||3—NH—C—H
CI"'z CH,
(M CH,
CO0~ 00~

Carbamoyl glutamate
ylglu N-Acetylglutamate

* Only for deficiency of N-acetylglutamate synthase
(NAGS) .



* Treatment of

argininosuccinase (ASL)

deficiency.

e Treatment for deficiencies in urea cycle enzymes

Arginine
(excess supplied)

\‘ Urea

Ornithine

Carbamoyl
phosphate

Citrulline

/ Aspartate

*Hs COO~

Argininosuccinate
(excreted)



e SUMMARY 18.2

* Ammonia is highly toxic to animal tissues. In the urea
cycle, ornithine combines with ammonia, in the form of
carbamoyl phosphate, to form citrulline. A second
amino group is transferred to citrulline from aspartate
to form arginine—the immediate precursor of urea.
Arginase catalyzes hydrolysis of arginine to urea and
ornithine; thus ornithine is regenerated in each turn of
the cycle.

* The urea cycle results in a net conversion of
oxaloacetate to fumarate, both of which are
intermediates in the citric acid cycle. The two cycles are
thus interconnected.



e SUMMARY 18.2

* The activity of the urea cycle is regulated at the
level of enzyme synthesis and by allosteric
regulation of the enzyme that catalyzes the
formation of carbamoyl phosphate.



