LEHNINGER PRINCIPLES OF BIOCHEMISTRY Sixth Edition

CHAPTER 6 Enzymes

6.1 An Introduction to Enzymes6.2 How Enzymes Work6.3 Enzyme Kinetics

■ What is enzyme(酶)?

Enzymes are catalysts (most are proteins) that catalyze chemical reactions in biological systems.

The enzyme reaction:

Why Enzymes?

- ✓ Natural catalysts
- ✓ Speed: 10¹⁶ over un-catalyzed rates!
- ✓ Specificity: only the desired reaction occurs
- Permit reactions under mild conditions

Chemistry composing of enzyme

• Simple proteins: Urease, protease, amylase, lipase, Rnase

TABLE 6-1

• Conjugated proteins:

as colactors for Enzymes		
lons	Enzymes	
Cu ²⁺	Cytochrome oxidase	
Fe ²⁺ or Fe ³⁺	Cytochrome oxidase, catalase, peroxidase	
K ⁺	Pyruvate kinase	
Mg ²⁺	Hexokinase, glucose 6-phosphatase, pyruvate kinase	
Mn ²⁺	Arginase, ribonucleotide reductase	
Мо	Dinitrogenase	
Ni ²⁺	Urease	
Zn ²⁺	Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B	

Some Inorganic Ions That Serve

Coenzymes function as transient carriers of specific functional groups.

ABLE 6-2 Some Coenzymes That Serve as Transient Carriers of Specific Atoms or Functional G		pecific Atoms or Functional Groups
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals
Biocytin	CO ₂	Biotin
Coenzyme A	Acyl groups	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)
Lipoate	Electrons and acyl groups	Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)
Tetrahydrofolate	One-carbon groups	Folate
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)

Enzyme nomenclature and classification

Conventional nomenclature

- 1. Base on the substrate: Adding the suffix –ase to the name of the substrates (urease, protease, amylase, etc.)
- 2. Base on the reaction: Adding the suffix –ase to a descriptive term for the reactions they catalyze (hydrolase, transferase, kinase, phosphatase, etc.)
- 3. Base on the substrate and reaction: (succinate dehydrogenase, glutamate dehydrogenase, protein kinase, etc.)
- 4. Base on the condition and reaction: (alkaline phosphatase, acid phosphatase, etc.)
- 5. Base on the source: (pepsin, trypsin, etc.)
- 6. Base on the gene name: Being named after their gene names (Rec A, Src, etc.)

Systematic nomenclature

- The International Union of Biochemistry and Molecular Biology (IUBMB) maintains the classification scheme.
- Categorize in to 6 classes according to the general class of organic reactions catalyzed
- Assigned a unique number, a systematic name, a shorter common name to each enzyme

TABLE 0-5 International Classification of Enzymes		al Classification of Enzymes
Class no.	Class name	Type of reaction catalyzed
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)
2	Transferases	Group transfer reactions
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)
4	Lyases	Cleavage of C—C, C—O, C—N, or other bonds by elimination, leaving double bonds or rings, or addition of groups to double bonds
5	Isomerases	Transfer of groups within molecules to yield isomeric forms
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor

1. Oxidoreductases(氧化还原酶类)

Catalyzing a variety of oxidation-reduction reactions

 $AH_2 + B \rightarrow A + BH_2$

Alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1.)

Cytochrome oxidase

L- and D-amino acid oxidase

2. Transferases (转移酶类)

Catalyzing transfer of a groups between donors and acceptors

 $A-X + B \rightarrow A + B-X$

Hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1.)

- Transaminase
- Transmethylases

3. Hydrolases (水解酶类)

Catalyzing cleavage of bonds by addition of water $A-B + H_2O \rightarrow AH + BOH$

> Lipase (triacylglycerol acyl hydrolase, EC 3.1.1.3.) Choline esterase Acid and alkaline phosphatases Urease

4. Lysases (裂合酶类)

Catalyzing lysis of a substrate and generating a double bond (nonhydrolytic, and non-oxidative reactions)

$A-B \rightarrow A+B$

Aldolase (ketose 1-phosphate aldehyde lysase, EC 4.1.2.7.)

Fumarase

Histidase

5. Isomerases (异构酶类)

Catalyzing racemization of optical or geometric isomers

 $A \rightarrow A'$

Triose phosphate isomerase (D-glyceraldehyde 3phosphate ketoisomerase, E.C. 5.3.1.1.)

Retinol isomerase

Phosphohexose isomerase

6. Ligases (连接酶类)

Catalyzing synthetic reactions at the expense of a high energy bond of ATP

$A + B \rightarrow A-B$

Glutamine synthetase (L-glutamate ammonia ligase, E.C. 6.3.1.2.)

Acetyl CoA carboxylase

Succinate thiokinase

Ubiquitin ligases

Classification number

E.C. Class.Subclass.Subsubclass.Individual entry EC (Enzyme Commission) Six Class 1, 2, 3, 4, 5, 6 Subclass 1, 2, 3, 4..... Subsubclass 1, 2, 3, 4..... Individual entry 1, 2, 3, 4...

EC 3.1.3.1 Alkaline Phosphatase Enzyme Commission No. 3 Class Hydrolases (hydrolysis reactions) No. 1 Subclass Cleaving ester linkage No. 3 Subsubclass Phosphoric monoester Individual entry the first

- > Characteristics of enzyme-catalyzed reactions
 - 1. The common characteristics of enzymes and other catalyzers
 - Accelerate chemistry reaction (thermodynamic allowable reaction)
 - Reduced the activation energy
 - Do not change the equilibrium constant
 - Do not consume themselves

2. Distinctive features

- High catalytic power
- High specificity
- Regulation of the enzyme activity
- Mildness of the action condition

High catalytic power

TABLE 6-5Some Rate EnhancementsProduced by Enzymes

Cyclophilin	10 ⁵
Carbonic anhydrase	10 ⁷
Triose phosphate isomerase	10 ⁹
Carboxypeptidase A	10 ¹¹
Phosphoglucomutase	10 ¹²
Succinyl-CoA transferase	10 ¹³
Urease	10 ¹⁴
Orotidine monophosphate decarboxylase	10 ¹⁷

Table 6-5

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

High specificity

Enzymes demonstrate the ability to distinguish different substrates. Substrates. absolute specificity: urease Structural specificity relative specificity bond specificity

Stereo isomer specificity geometrical isomer specificity

Absolute specificity: Enzymes can recognize only one type of substrate and implement their catalytic functions.

methyl urea

Relative specificity: Enzymes catalyze one class of substrates or one kind of chemical bond in the same type.

Stereospecificity: The enzyme can act on only one form of isomers of the substrates

Lactate dehydrogenase can recognize only the L-form but the D-form lactate.

- Enzyme-catalyzed reactions can be regulated in response to the external stimuli, satisfying the needs of biological processes.
- Regulations can be accomplished through varying the enzyme quantity, adjusting the enzymatic activity, or changing the substrate concentration.

Mild action condition

Act in biological system

Mechanism of enzyme-catalyzed reactions

 ΔG^+ : activation energy

Intermediate state

Forming an enzyme-substrate complex, a transition state, is a key step in the catalytic reaction.

$E + S \iff ES \longrightarrow E + P$ initial intermediate final

Binding energy in catalysis

The energy derived from enzyme-substrate interaction is called **binding energy**, $\Delta G_{\rm B}$.

Reaction coordinate

The weak binding interactions between the enzyme and the substrate provide a substantial driving force for enzymatic catalysis.

Lock-and-key model

Both E and S are rigid and fixed, so they must be complementary to each other perfectly in order to have a right match.

Induced-fit model (a) Substrat (b) ES complex ADF Glucose Enzyme

The binding induces conformational changes of both E and S, forcing them to get a perfect match.

Induced fit in hexokinase

Active site

- Almost all the enzymes are proteins having well defined structures.
- Some functional groups are close enough in space to form a portion called the active site.

Key active site

amino acid

residues

Substrate

- Active sites look like a cleft or a crevice.
- Active sites are hydrophobic.

- The active center has two essential groups in general
 - 1. Binding group: to associate with the reactants to form an enzyme-substrate complex
 - 2. Catalytic group: to catalyze the reactions and convert substrates into products

- The characteristics of the active center
 - It comprises only several amino acids residues and only a small part of overall enzyme structure;
 - It's a special pocket or cleft with certain three-dimensional structure;
 - It's complementary to the structure of the substrate, but it's pliable;
 - Substrate binds to the active site through relatively weak forces;
 - ✓ The enzyme active center is more flexible than its whole conformation.

Enzymatic activity

- Enzymatic activity is a measure of the capability of an enzyme of catalyzing a chemical reaction.
- It directly affects the reaction rate.
- International unit (IU): the amount of enzyme required to convert 1 µmol of substrate to product per minute under a designated condition.
- Determination of the enzymatic activity requires proper treatment of enzymes, excess amount of substrate, optimal temperature and pH, ...

■ Factors affecting enzyme activity

- Temperature
- pH
- Activators
- Inhibitors
- •

Effect of temperature

- Optimal temperature (T_o) is the characteristic T at which an enzyme has the maximal catalytic power.
- 35 ~ 40°C for warm blood species.
- Reaction rates increase by 2 folds for every 10°C rise.
- Higher T will denature the enzyme.

Effect of pH

Optimal pH is the characteristic pH at which the enzyme has the maximal catalytic power.

Enzyme	Optimum pH
Pepsin	1.5
Catalase	7.6
Trypsin	7.7
Fumarase	7.8
Ribonuclease	7.8
Arginase	9.7

Activator

Activators are the compounds which bind to an enzyme or an enzyme-substrate complex to enhance the enzymatic activity without being modified by the enzymes.

Inhibitors

- Inhibitors are certain molecules that can decrease the catalytic rate of an enzyme-catalyzed reaction.
- Inhibitors can be normal body metabolites and foreign substances (drugs and toxins).
Inhibition processes

- The inhibition process can be either irreversible or reversible.
- The reversible inhibition can be competitive, noncompetitive, or un-competitive.

Regulation of enzyme

- Many biological processes take place at a specific time; at a specific location and at a specific speed.
- The catalytic capacity is the product of the enzyme concentration and their intrinsic catalytic efficiency.
- The key step of this process is to regulate either the enzymatic activity or the enzyme quantity.

6.2 How Enzymes Work

Reasons for regulation

- Maintenance of an ordered state in a timely fashion and without wasting resources
- ✓ Conservation of energy to consume just enough nutrients
- ✓ Rapid adjustment in response to environmental changes
- Controlling an enzyme that catalyzes the rate-limiting reaction will regulate the entire metabolic pathway, making the biosystem control more efficient.

6.2 How Enzymes Work

Allosteric enzyme

(别构酶)

Function through reversible, noncovalent binding of regulatory compounds (allosteric modulators), which are generally small metabolites or cofactors.

Covalent modification

Reversible

Phosphorylation

Acetylation

.

Irreversible

Cleavage of enzyme precursor

- Kinetics of enzyme-catalyzed reactions
 - Time course of an enzyme-catalyzed reaction

• Early stage of an enzyme-catalyzed reaction

Reaction rate

Reaction velocity curve

V₀: initial velocity (rate)
 V_{max}: maximum velocity
 [S]: concentration of substrate
 [P]: concentration of product

Intermediate state

Forming an enzyme-substrate complex, a transition state, is a key step in the catalytic reaction.

$$E + S \rightleftharpoons_{k_{-1}}^{k_1} ES \rightleftharpoons_{k_{-2}}^{k_2} E + P$$

initial intermediate final

- k_1 : rate constant for ES formation
- k_{-1} : rate constant for ES dissociation
- k_2 : rate constant for the product released from the active site
- k_{-2} : rate constant for the reverse reaction forming EP

 Three assumptions for Michaelis-Menten equation

$$\mathbf{E} + \mathbf{S} \rightleftharpoons_{k_{-1}}^{k_1} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$$

Leonor Michaelis 1875–1949

Maud Menten 1879–1960

- Initial velocity assumption: the rate of any back reaction of E + P is negligible, and [P] is essentially 0.
- 2. $[S]_0 >> [E]_0$, $[S] \approx [S]_0$
- 3. Equilibrium method : The enzyme (E) and its substrate (S) associate reversibly to form an enzyme-substrate complex (ES).

$$\mathbf{E} + \mathbf{S} \xrightarrow[k_{-1}]{k_{-1}} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$$

Steady-state assumption: The rate of formation of ES is equal to the rate of its breakdown

 $k_1[E][S] = k_1[ES] + k_2[ES]$

Total enzyme concentration: $[E_t] = [E] + [ES]$

 $k_1([E_t]-[ES])[S] = k_{-1}[ES] + k_2[ES]$

 $k_1[E_t][S] = k_1[ES] + k_2[ES] + k_1[ES][S]$

 $= (k_{-1} + k_2 + k_1 [S])[ES]$

$$\mathbf{E} + \mathbf{S} \rightleftharpoons_{k_{-1}}^{k_1} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$$

 $[\mathsf{ES}] = k_1[\mathsf{E}_t][\mathsf{S}] / (k_{-1} + k_2 + k_1[\mathsf{S}])$

 $= [\mathsf{E}_{t}][\mathsf{S}] / ((k_{-1} + k_{2})/k_{1} + [\mathsf{S}])$

Define $(k_{-1} + k_2)/k_1$ as Michaelis constant K_m

$$K_{\rm m} = \frac{k_2 + k_{-1}}{k_1}$$

$$V_0 = \frac{k_2[\mathbf{E}_t][\mathbf{S}]}{K_{\mathrm{m}} + [\mathbf{S}]}$$

$$V_0 = k_2 [ES] = k_2 [E_t][S] / (K_m + [S])$$

 $V_{max} = k_2 [E_t]$
 $V_0 = V_{max}[S] / (K_m + [S])$

 $[ES] = [E_t][S] / (K_m + [S])$

$$V_0 = \frac{V_{\text{max}}[S]}{K_{\text{m}} + [S]}$$

■ Significance of *K*_m

 $K_{\rm m} = \frac{k_2 + k_{-1}}{k_1}$

- $K_{\rm m}$ is a characteristic constant of enzyme.
- The substrate concentration at which enzyme-catalyzed reaction proceeds at one-half of its maximum velocity
- *K*_m is independent of [E]. It is determined by the structure of E, the substrate and environmental conditions (pH, temperature, ionic strength, ...)
- The value of K_m quantifies the affinity of the enzyme and the substrate under the condition of $k_2 << k_{-1}$. The larger the K_m , the smaller the affinity.

Lineweaver-Burk plot

To determine $K_{\rm m}$ and $V_{\rm max}$

TABLE 6-6	K _m for Some Enzymes and Substrates				
Enzyme		Substrate	<i>К</i> _т (тм)		
Hexokinase (brain)		ATP D-Glucose D-Fructose	0.4 0.05 1.5		
Carbonic anhydrase		HCO ₃	26		
Chymotrypsin		Glycyltyrosinylglycine N-Benzoyltyrosinamide	108 2.5		
β -Galactosidase		D-Lactose	4.0		
Threonine dehydratase		L-Threonine	5.0		

Table 6-6

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

The K_m can vary greatly from enzyme to enzyme, and even for different substrates of the same enzyme.

Turnover number k_{cat}

k_{cat}: The number of substrate molecules converted into product *per enzyme molecule per unit time* when the enzyme is saturated with substrate.

It is referred to the molecular activity of the enzyme.

TABLE 6-7	Turnover Number, $k_{_{\mathrm{cat}}}$, of Some Enzymes				
Enzyme		Substrate	\boldsymbol{k}_{cat} (s ⁻¹)		
Catalase		H ₂ O ₂	40,000,000		
Carbonic anhydrase		HCO ⁻ ₃	400,000		
Acetylcholinesterase		Acetylcholine	14,000		
β-Lactamase		Benzylpenicillin	2,000		
Fumarase		Fumarate	800		
RecA protein (an ATPase)		АТР	0.5		

Table 6-7

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

k_{cat} is a first-order rate constant, **s**⁻¹

• k_{cat}/K_m , specificity constant

The best way to compare the catalytic efficiencies of different enzymes or the turnover of different substrates by the same enzyme is to compare the ratio k_{cat}/K_m for the two reactions, which sometimes is called the **specificity constant**, is the rate constant for the conversion of E+S to E+P.

$$V_0 = \frac{k_{\text{cat}}[\mathbf{E}_t][\mathbf{S}]}{K_{\text{m}} + [\mathbf{S}]} \quad \text{When [S] } \ll K_{\text{m}} \quad V_0 = \frac{k_{\text{cat}}}{K_{\text{m}}} [\mathbf{E}_t][\mathbf{S}]$$

 V_0 in this case depends on the concentration of two reactants, [E_t] and [S]; therefore this is a second-order rate equation and the constant k_{cat}/K_m is a second-order rate constant with units of M⁻¹s⁻¹.

• Limit of k_{cat}/K_m is the diffusion-controlled rate

$$\mathbf{E} + \mathbf{S} \xrightarrow[k_{-1}]{k_{-1}} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$$

$$K_{\rm m} = \frac{k_2 + k_{-1}}{k_1}$$

$$\frac{k_{cat}}{K_m} = \frac{k_1 k_2}{k_{-1} + k_2} = k_1 \frac{k_2}{k_{-1} + k_2} \le k_1$$

TABLE 6-8Enzymes for Which k_{cat}/K_m is Close to the Diffusion-Controlled Limit (10⁸ to 10⁹ m⁻¹s⁻¹)

Enzyme	Substrate	K _{cat} (s ⁻¹)	К (м)	K_{cat}/K_{m} (M ⁻¹ S ⁻¹)
Acetylcholinesterase	Acetylcholine	1.4 × 104	9 × 10 ⁻⁵	1.6 × 10 ⁸
Carbonic anhydrase	CO ₂ HCO ₃	$\begin{array}{c} 1\times10^6\\ 4\times10^5\end{array}$	1.2×10^{-2} 2.6×10^{-2}	$\begin{array}{c} \textbf{8.3}\times\textbf{10}^{7}\\ \textbf{1.5}\times\textbf{10}^{7} \end{array}$
Catalase	H ₂ O ₂	4 × 10 ⁷	1.1 × 10°	4 × 10 ⁷
Crotonase	Crotonyl-CoA	5.7 × 10 ³	2 × 10 ⁻⁵	$2.8 imes10^{8}$
Fumarase	Fumarate Malate	$\begin{array}{c} 8\times10^2\\ 9\times10^2\end{array}$	5 × 10⁻⁵ 2.5 × 10⁻⁵	$1.6 imes10^8$ $3.6 imes10^7$
β-Lactamase	Benzylpenicillin	$2.0 imes 10^3$	2 × 10 ⁻⁵	1 × 10 ⁸

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

Enzyme-catalyzed reactions involving two substrates

1. Form ternary complex

Ordered reaction:

Random reaction:

2. Do not form ternary complex

Ping-Pong reaction:

King-Altman method

King, E. L., and Altman, C. (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. *J. Phys. Chem.*, **60**, 1375–1378.

Ordered reaction:

Random reaction:

Substrate A does not affect binding of substrate B and vice versa.

Ping-Pong reaction:

Inhibition of Enzyme

Enzyme Inhibitors

- Enzyme inhibitors are certain molecules that can decrease the catalytic rate of an enzyme-catalyzed reaction.
- Enzyme inhibitors can be normal body metabolites and foreign substances (drugs and toxins).

Inhibition processes

The inhibition process can be either irreversible or reversible.

Irreversible inhibition

- Inhibitors are covalently bound to the essential groups of enzymes.
- Inhibitors cannot be removed with simple dialysis or super-filtration.
- Binding can cause a partial or complete loss of the enzymatic activity.

Reversible inhibition

- Inhibitors are bound to enzymes non-covalently.
- The reversible inhibition is characterized by an equilibrium between free enzymes and inhibitor-bound enzymes.
- The reversible inhibition can be competitive, un-competitive, or mixed inhibition.

Competitive inhibition

- Competitive inhibitors share the structural similarities with that of substrates.
- Competitive inhibitors compete for the active sites with the normal substrates.
- Inhibition depends on the affinity of enzymes and the ratio of [E] to [S].

$$V_{0} = \frac{V_{\max}[S]}{\alpha K_{m} + [S]}$$

$$\alpha = 1 + \frac{[I]}{K_{I}}$$

$$K_{I} = \frac{[E][I]}{[EI]}$$

$$\frac{1}{V_{0}} = \left(\frac{\alpha K_{m}}{V_{max}}\right) \frac{1}{[S]} + \frac{1}{V_{max}}$$

$$\alpha = 3 \begin{bmatrix} II \end{bmatrix}$$

$$\alpha = 1$$

$$\alpha = 1$$

$$\alpha = 1$$
No inhibitor
$$\frac{1}{V_{max}} \quad Slope = \frac{\alpha K_{m}}{V_{max}}$$

$$\frac{1}{[S]} \left(\frac{1}{mM}\right)$$

Uncompetitive inhibition

- Uncompetitive inhibitors bind only to the enzyme-substrate complexes.
- The E-I-S complexes do not proceed to form products.

Mixed inhibition

- Inhibitors bind to other sites rather than the active sites on the free enzymes or the E-S complexes.
- The E-I complex formation does not affect the binding of substrates.
- The E-I-S complexes do not proceed to form products.

When $\alpha = \alpha'$, rarely encountered in experiments, classically has been defined as **noncompetitive inhibition**.

TABLE 6-9Effects of Reversible Inhibitors onApparent Vand Apparent K		
Inhibitor type	Apparent V _{max}	Apparent K _m
None	V _{max}	<i>K</i> _m
Competitive	V _{max}	αK _m
Uncompetitive	$V_{\rm max}/lpha'$	$K_{\rm m}/lpha'$
Mixed	$V_{_{ m max}}/lpha'$	$\alpha K_{\rm m}/\alpha'$

Table 6-9

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Take home messages ...

- ✓ An Introduction to Enzymes
 Enzyme nomenclature and classification
- How Enzymes Work
 Distinctive features of enzymes, binding energy, active site, regulatory enzyme

✓ Enzymes Kinetics

Michaelis-Menten equation, Significance of Km, Kcat, Inhibition of enzyme