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Part I. DNA Repair




What We Have Learned Previously

TABLE 5-1

Replication step Errors per nucleotide added
5' — 3’ polymerization 1in 10°

3" — &' exonucleolytic proofreading 1in 102

Strand-directed mismatch repair 1in 103

Combined 1in 1010

The third step, strand-directed mismatch repair, is described later in this chapter. For the
polymerization step, “errors per nucleotide added” describes the probability that an incorrect
nucleotide will be added to the growing chain. For the other two steps, “errors per nucleotide

added” describes the probability that an error will not be corrected. Each step therefore reduces
the chance of a final error by the factor shown.




Part | Spontaneous DNA Damage

DNA lesion Number repaired in 24 h
Hydrolysis

Depurination 18,000
Depyrimidination 600
Cytosine deamination 100
5-Methylcytosine deamination 10
Oxidation

8-oxo G 1500
Ring-saturated pyrimidines (thymine glycol, cytosine 2000
hydrates)

Lipid peroxidation products (M1G, etheno-A, 1000
etheno-C)

Nonenzymatic methylation by S-adenosylmethionine
7-Methylguanine 6000
3-Methyladenine 1200
Nonenzymatic methylation by nitrosated polyamines and peptides
OB-Methylguanine 20-100
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Deamination
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Formation of Pyrimidine
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How Chemical Modifications of Nucleotides Produce Mutations
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What Are the Consequences?
— Various genetic diseases and cancer
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What Are the Consequences?
— Various genetic diseases and cancer
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Part] Ames Test for Carcinogens,

Based on Their Mutagenicity
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How Does a Living Organism Respond to Mutations?

— DNA Repair
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Types of DNA Repair System in E. Coli

 Mismatch repair
* Base-excision repair
* Nucleotide-excision repair

* Direct repair
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Which Strand to Repair?
— An Issue of Strand Discrimination

Y
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In E. Coli, Dam methylase methylates DNA at the N° position
of all adenines within (5’)GATC sequence.
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Methyl-Directed Mismatch Repair
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MutH has a site-specific endonuclease activity. It is inactive until the complex encounters a
hemimethylated GATC sequence. MutH cuts at the 5’-side of the G in the GATC sequence in the
unmethylated strand, which marks the strand for repair.
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Methyl-Directed Mismatch Repair
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Proteins Required for Methyl-Directed Mismatch Repair
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t Nucleotide-Excision Repair
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Direct Repair
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Direct Repair of O°-methylguanidine
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Direct Repair of Alkylated Bases by AlkB
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Interaction of Replication Forks with DNA Damage Can Lead to

Error-Prone Translesion DNA Synthesis
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Translesion DNA Polymerases Can Use Damaged Templates
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Two Ways to Repair Double-Strand Breaks

(A) NONHOMOLOGOUS END JOINING (B) HOMOLOGOUS RECOMBINATION
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Summary

Mismatch repair in E. Coli is directed by transient nonmethylation of the (5’)GATC sequence on the
newly synthesized strand.

Base-excision repair systems recognize and repair damage caused by environmental reagents and
spontaneous reaction of nucleotides.

Nucleotide-excision repair systems recognize and remove a variety of bulky lesion and pyrimidine
dimers.

Direct repair system works through direct reversal of the reaction causing the damage.
In bacteria, error-prone translesion DNA synthesis occurs in response to very heavy DNA damage.

Two ways to repair double-strand breaks: nonhomologous end joining and homologous recombination.



Part Il. DNA Recombination
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Genetic Recombination

Homologous Genetic Recombination
Site-Specific Recombination

DNA Transposition
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Homologous Recombination Has Several Functions

In bacteria, it is mainly recombinational repair, which is directed at the
reconstruction of replication forks stalled at the site of DNA damage.

In eukaryotes, homologous recombination has several roles in replication and
cell division, including the repair of stalled replication forks.
Recombination occurs with highest frequency during meiosis.
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Repair of a Broken Replication Fork by
Homologous Recombination
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Meiosis in Animal Germ Cells
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Homologous Recombination Has at Least
Three Identifiable Functions

* It contributes to the repair of several types of DNA damage

* It provides, in eukaryotic cells, a transient physical link between
chromatids that promotes the orderly segregation of chromosomes
at the first meiotic cell division

* It enhances genetic diversity in population
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@ A double-strand break in one of two
homologs is converted to a double-

Strands with 3’ ends are degraded
less than those with 5’ ends,
% producing 3’ single-strand extensions.

@ An exposed 3’ end pairs with its
complement in the intact homolog.
The other strand of the duplex
is displaced.

strand gap by the action of exonucleases.

@ The invading 3’ end is extended by
DNA polymerase plus branch migration,
eventually generating a DNA molecule
with two crossovers called Holliday
intermediates.

@ Further DNA replication replaces the

DNA missing from the site of the
original double-strand break.

@ Cleavage of the Holliday intermediates by
specialized nucleases generates either of
the two recombination products. In product
set 2, the DNA on either side of the region
undergoing repair is recombined.
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Holliday Intermediates Are a Feature of Homologous

Recombination Pathways in All Organisms
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Branch Migration
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Recombination Requires a Host of
Enzymes and Other Proteins

* In E. Coli, RecB, RecC and RecD form a heterotrimeric

RecBCD, which has both helicase and nuclease activities.



Part Il

Helicase and Nuclease Activities of the RecBCD Enzyme
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Recombination Requires a Host of
Enzymes and Other Proteins

e In E. Coli, RecD, RecC and RecD form a heterotrimeric RecBCD, which
has both helicase and nuclease activities.

* The RecA promotes all central steps in homologous recombination
process: the pairing of two DNAs, formation of Holliday
intermediates, and branch migration.
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The Active Form of RecA Protein Is an
Ordered Helical Filament
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RecA Filaments Are Extended or
Disassembled in the 5’-to-3’ Direction
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Filament Assembly Is Assisted by RecF, RecO
and RecR, and Inhibited by RecX
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RecA-Promoted DNA Strand Exchange in vitro
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Model for RecA-Mediated DNA Strand Exchange
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Recombination Requires a Host of Enzymes

and Other Proteins

* In E. Coli, RecD, RecC and RecD form a heterotrimeric RecBCD, which has both
helicase and nuclease activities.

 The RecA promotes all central steps in homologous recombination process: the
pairing of two DNAs, formation of Holliday intermediates, and branch migration.

 The RuvA and RuvB (repair of UV damage) form a complex that binds to
Holliday complex, displaces RecA proteins, and promotes branch migration at
higher rates than does RecA.

* Nucleases, often called resolvases, specifically cleave Holliday intermediates.
RuvC is one of the at least two such nucleases in E. Coli.
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All Aspects of DNA Metabolism Come Together to
Repair Stalled Replication Forks
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|. Recombinational DNA Repair of DNA Lesion in

Stalled Replication Fork
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Il. Recombinational DNA Repair of DNA Nick in
Stalled Replication Fork
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Site-Specific Recombination

e Each site-specific recombination system consists of
 An enzyme called recombinase
e A short (20 to 200 bp), unique DNA sequence where the recombinase acts
 One or more of the auxiliary proteins that regulate the timing or outcoming

 Two general classes of site-specific recombination systems
e Rely on Tyr in the active site
e Rely on Ser in the active site
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Site-Specific Recombination

In systems that employ an active-site Ser residue, both strands are cut concurrently
and rejoined to the new partners without forming Holliday intermediate.

The exchange is always reciprocal and precise, regenerating the recombination sites
when the reaction is complete.

The two recombination sites align in the same orientation during the recombination
reaction.
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Effects of Site-Specific Recombination

Inversion Deletion and insertion
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Outcomes Depends on the Location
and Orientation of the Recombination Sites

* Two sites on the same DNA: inversion or deletion

e Two sites on different DNAs: Intermolecular
* If one or both are circular : Insertion
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Integration and Excision of Bacteriophage A DNA at

the Chromosomal Target Site
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Complete Chromosome Replication Can Require

Site-Specific Recombination
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Transposition
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Transposable Genetic Elements Move from One

Location to Another

* Transposition is a recombination that allows the movement of
transposable elements, or transposons.

* DNA sequence homology is usually not required for this movement,
called transpostition; the new location is determined more or less
randomly.

* Bacteria have two classes of transposons.

* Insertion sequences (simple transposons) contain only the sequences
required for transposition and transposases.

e Complex transposons contain one or more genes in addition to those
needed for transposition.
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Duplication of the DNA Sequence at a Target Site
When a Transposon Is Inserted
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rart! Two General Pathways for Transposition:

Direct and Replicative
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Immunoglobulin Genes Assemble by Recombination
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Mechanism of Immunoglobulin Gene Rearrangement
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Summary

 DNA sequences are rearranged in recombinational reactions

 Homologous genetic recombination can take place between any DNA
molecules that share sequence homology.

* In meiosis, it helps to ensure accurate chromosomal segregation and create genetic
diversity.

* In both bacteria and eukaryotes, it serves in the repair of stalled replication forks.
* A Holliday intermediate forms during homologous recombination.

* Site-specific recombination occurs at specific target sequences and this
process can also involve Holliday intermediate.

* In virtually any cells, transposons use recombination to move within or
between chromosomes.
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