Nucleotides and Nucleic Acids

Tong-Jin Zhao

School of Life Sciences, Xiamen University

Outlines

Part I. Some Basics

Part II. Nucleic Acid Structures

Part III. Nucleic Acid Chemistry

Part IV. Other Functions of nucleotides

Part I. Some Basics about Nucleic Acids and Nucleotides

sugar

+

G

base

(guanine)

G

nucleotide

Nucleic Acids

• Deoxyribonucleic acid (DNA)

- Ribonucleic acid (RNA)
 - Ribosomal RNAs (rRNAs)
 - Messenger RNAs (mRNAs)
 - Transfer RNAs (tRNAs)
 - MicroRNAs (miRNA)
 - Non-coding RNAs (ncRNAs)
 - •

History of Nucleic Acids

- Nuclein were discovered by Friedrich Miescher in 1869.
- In 1889, Richard Altmann discovered that nuclein have acidic properties and it became called nucleic acid.
- In 1938, Astbury and Bell published the first X-ray diffraction pattern of DNA.
- In 1953, Watson and Crick determined the structure of DNA.

Friedrich Miescher

(1844 - 1895)

Nucleotides

- Nucleotides are building blocks of nucleic acids
 - Nucleic acids: polynucleotides
- Three characteristic components
 - A nitrogenous base (N-β-glycosyl bond)
 - A pentose

- A phosphate
- Nucleoside: without phosphate

The Heterocyclic Bases

Nomenclature

TABLE 8–1	Nucleotide and Nucleic Acid Nomenclature		
Base	Nucleoside	Nucleotide	Nucleic acid
Purines			
Adenine	Adenosine Deoxyadenosine	Adenylate Deoxyadenylate	RNA DNA
Guanine	Guanosine Deoxyguanosine	Guanylate Deoxyguanylate	RNA DNA
Pyrimidines			
Cytosine	Cytidine Deoxycytidine	Cytidylate Deoxycytidylate	RNA DNA
Thymine	Thymidine or deoxythymidine	Thymidylate or deoxythymidylate	DNA
Uracil	Uridine	Uridylate	RNA

The Pentoses Define the Identity of a Nucleic Acid

DNA: 2'-deoxy-D-ribose

RNA: D-ribose

OH CH₂OOH H H H H H H

Conformation of a ribose

Deoxyribonucleotides Are Structural Units of DNA

Ribonucleotides Are Structural Units of RNA

Some Minor Purine and Pyrimidine Bases

Nucleotides with Phosphate Groups in Positions Other than on the 5' Carbon

From Nucleotides to Nucleic Acids

Phosphodiester bonds

Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids

5' end \longrightarrow 3'-end

The orientation of a strand, not the orientation of each phosphodiester bond

Hydrolysis of the Phosphodiester Bonds in RNA under Alkaline Conditions

Illustration of a Segment of DNA

- 5' Left to Right 3'
- **рА-С-G-Т-А**_{он}
- pApCpGpTpA
- pACGTA

Oligonucleotide: ≤ 50 nucleotides Polynucleotide: more than 50

The Properties of Nucleotide Bases

- Purines and pyrimidines in are aromatic
- Pyrimidines are planar, and purines are very nearly planar
- Flat surfaces are hydrophobic
 - Hydrophobic stacking

- Van de Waals and dipole-dipole interactions
- Hydrogen bonds between two complementary strands

Hydrogen-Bonding Pattern in the Base Pairs

The Properties of Nucleotide Bases

• Most of the bonds have partial double-bond character

Part I

• May exist in two or more tautomeric forms depending on pH

The Properties of Nucleotide Bases

- UV absorbance at 260nm
- $\epsilon_{260} \approx 10,000 \text{ (M}^{-1} \text{ cm}^{-1} \text{)}$
- The $A_{260} \approx 50 \ \mu g$ /ml for DS DNA
- The $A_{260} \approx 40 \ \mu g$ /ml for SS DNA or RNA

Summary

Part I. Some Basics

- What is a nucleotide?
- How are nucleic acids built from nucleotides?
- What is the difference between DNA and RNA?

Part II. Nucleic Acid Structure

Primary, secondary and tertiary

Important Clues to the Structure of DNA

- DNA Stores Genetic Information
- Avery-MacLeod-McCarty experiment (1935-1944)
- Hershey-Chase experiment (1952)
- Chargaff's Rules
- %A = %T and %G = %C

• X-ray diffraction pattern of DNA

Chargaff's Rules

- The base composition of DNA generally varies from one species to another
- DNAs from different tissues of the same species have the same composition
- DNA composition in a given species does not change with age or environment
- In all cellular DNAs, regardless of species, the number of A equals to that of T (A=T). Similarly, G=C. As a result, the sum of purine residues equals that of the pyrimidine residues, A+G=T+C.

X-Ray Diffraction Pattern of DNA

FIGURE 4.9

Evidence for the structure of DNA. This photograph, taken by Rosalind Franklin, shows the x-ray diffraction pattern produced by wet DNA fibers. It played a key role in the elucidation of DNA structure. The cross pattern indicates a helical structure, and the strong spots at top and bottom correspond to a helical rise of 0.34 nm. The layer line spacing is one-tenth of the distance from the center to either of these spots, showing that there are 10 base pairs per repeat.

Reprinted by permission from R. E. Franklin and R. Gosling, Nature (1953) 171:740; © 1953 MacMillan Magazines, Ltd.

Rosalind Franklin, 1920–1958

Maurice Wilkins, 1916–2004

Helical with two periodicities along the long axis, a primary one of 3.4 Å and a secondary one of 34 Å.

Watson-Crick Model for the Structure of DNA

Antiparallel and Complementary

Features of the Watson-Crick Model

- 3.4 Å per base, 10.5 base pairs per turn, 20 Å in diameter
- Right-handed, with major and minor grooves
- Antiparallel and complementary
- Hydrogen bonding and base stacking
- **Provides structure basis for DNA replication (will discuss later)**

DNA Can Occur in Different Three-Dimentional Forms

• Different possible conformations of deoxyribose

- Phosphodeoxyribose backbone
- C-1'-N-Glycosyl bond

Comparison of A, B, and Z forms of DNA

- A form devoid of water, favored by RNA
- B form Standard DNA double helix under physiological conditions
- Z form laboratory anomaly,
 - Left Handed
 - Requires altered GC
 - High Salt/ Charge neutralization

Comparison of A, B, and Z forms of DNA

	A form	B form	Z form
Helical sense Diameter Base pairs per	Right handed ∼26 Å	Right handed ∼20 Å	Left handed ~18 Å
helical turn Helix rise per base	11	10.5	12
pair Base tilt normal to	2.6 Å	3.4 Å	3.7 Å
the helix axis	20 °	6 °	7 °
Sugar pucker conformation	C-3' endo	C-2' endo	C-2' endo for pyrimidines; C-3' endo for purines
Glycosyl bond conformation	Anti	Anti	Anti for pyrimidines; syn for purines

Unusual DNA Structures

Rotating Tower (Dubai)

Palindromes

Regions of DNA with inverted repeats. Self-complementary within each strand, and able to form hairpin or cruciform.

Hairpin Formation from a Single Strand

Part II Cruciform Formation with Both Strands Involved

Mirror Repeat

Mirror repeat cannot form hairpin or cruciform structures.

DNA Structures Containing Three Strands

Hoogsteen positions Hoogsteen pairing

Triple Helix or H-DNA

DNA Structures Containing Four Strands

Part II

Guanosine tetraplex

Possible Orientations in a G-Tetraplex

Part II

Many RNAs Have More Complex Three-Dimentional Structures

Computer generated RNA structure tied in a trefoil knot.

Secondary Structures in RNA

Part II

Hairpin double helix

A-form right-handed double helix

A Typical tRNA Structure

E coli 16S rRNA

Base-Paired Helical Structures in an RNA

Three-Dimensional Structure in RNA

Summary

Part II. Nucleic Acid Structure

- What is the Waston-Crick model?
- What is the difference between B-DNA and A-, or Z-DNA?
- How many unusual DNA structures do you know?
- RNAs can adopt more complex structures.

Part III. Nucleic Acid Chemistry

Microarray

NYC

Double-Helical DNA and RNA Can Be Denatured

Denaturation

Disruption of the hydrogen bonds and base stacking Decreased viscosity <u>Hyper</u>chromic effect

Annealing or Renaturation

Partially denatured Fully denatured <u>Hypo</u>chromic effect

Heat Denaturation of DNA

Melting point (t_m) The temperature at the mid-point of the transition

Depends on pH, ionic strength, and size and base composition of the DNA

Relationship between t_m and GC Content of a DNA

Partially Denatured DNA

RNA Duplexes Are More Stable than DNA Duplexes

At neutral pH, denaturation of a double-helical RNA requires temperatures 20 °C or more higher than those required for denaturation of a DNA with comparable sequence.

DNA Hybridization

- Nucleic Acids from Different Species Can Form Hybrids
- The closer the evolutionary relationship between two species, the more extensively their DNAs will hybridize.
- Basis for many of molecular biology techniques
- Southern blot
- Northern blot
- Fluorescent In Situ Hybridization (FISH)
- Colony hybridization
- Microarray

Southern Blot Procedure

--As Applied to RFLP DNA Fingerprinting

The human Karyotype.

Colony Hybridization

--Use of Hybridization to Identify a Clone with a Particular DNA Segment

DNA Microarray

-- A Powerful Tool to Assay Gene Expression Levels of Multiple Genes Simultaneously

DNA microarray

Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations

• Mutations

- Alternation in DNA structures that produce permanent changes in the genetics information encoded therein
- Deamination
- Depurination or depyrimidination
- Pyrimidine dimers
- Reactive chemicals, etc.

Deamination

Depurination

Occurs at higher rate for purines than for pyrimidines.

1/10⁵ purines (1/10⁴ in mammalian cells) are lost every 24 h.

Formation of Pyrimidine Dimers

UV and ionizing radiations (cosmic rays): 10% DNA damage caused by environmental agents

Reactive Chemicals—Deaminating Agents

Bisulfite has similar effects.

Bisulfite sequencing is used to determine DNA methylation pattern.

Reactive Chemicals—Alkylating Agents

Reactive Chemicals—Alkylating Agents

O⁶-Methylguanine

Oxidative Damage Is the Most Important Source of Mutagenic Alternations in DNA

Excited-Oxygen Species (Reactive Oxygen Species, ROS) Hydrogen Peroxide, Hydroxyl Radicals, and Superoxide radicals

Part III

Some Bases of DNA Are Enzymatically Methylated

Adenine and cytosine are methylated more often than guanine and thymine.

All known DNA methylases use **S-adenosylmethionine** as a methyl group donor.

The Sequence of Long DNA Strands Can Be Determined

Development of two techniques in 1977

Alan Maxam and Walter Gilbert

Frederick Sanger

Frederick Sanger

Walter Gilbert

Nobel Prize in Chemistry in 1980

Part III Maxam-Gilbert Sequencing

From Mathews and van Holde: Biochemistry 2/e. © The Benjamin/Cummings Publishing Co., Inc.

Sanger Sequencing

Sanger Sequencing

Part III

Strategy for Automating DNA Sequencing

Part III

Automated DNA Synthesis

H₃CO

OCH₃

DMT

Summary

Part III. Nucleic Acid Chemistry

- What is the denaturation and annealing?
- What techniques rely on DNA hybridization?
- Spontaneous reaction happens.
- What is Sanger sequencing?

Part IV. Other Functions of Nucleotides

Nucleotides Carry Chemical Energy in Cells

Abbreviations of ribonucleoside 5'-phosphates				
Base	Mono-	Di-	Tri-	
Adenine	AMP	ADP	ATP	
Guanine	GMP	GDP	GTP	
Cytosine	СМР	CDP	СТР	
Uracil	UMP	UDP	UTP	

Abbreviations of deoxyribonucleoside 5'-phosphates				
Base	Mono-	Di-	Tri-	
Adenine	dAMP	dADP	dATP	
Guanine	dGMP	dGDP	dGTP	
Cytosine	dCMP	dCDP	dCTP	
Thymine	dTMP	dTDP	dTTP	

Phospho-Anhydrides and Phosphate Esters – High Energy Bonds

Adenine Nucleotides Are Components of Many Enzyme Cofactors

NAD⁺/NADH **Hydride transfers**

Nicotinamide adenine dinucleotide (NAD⁺)

Flavin adenine dinucleotide

Some Nucleotides Are Regulatory Molecules

Adenosine 3',5'-cyclic monophosphate (cyclic AMP; cAMP)

Guanosine 3',5'-cyclic monophosphate (cyclic GMP; cGMP)

second messengers

cGAMP as a Newly Identified Sencond Messenger

Science **2013**, *339*, 786–791.

Nat. Chem. Biol. 2013, 533-534.

ppGpp Is Produced in Bacteria in Response to a Slowdown in Protein Synthesis During Amino Acid Starvation

Inhibits rRNA and tRNA snthesis

Question Time

Come back for Genes and Chromosomes.

References:

Lehninger Principle of Biochemistry (fifth edition) Molecular Biology of the Cell (sixth edition)

Find me @C328